Symmetry decomposition of functions on compact semisimple Lie groups

J. Patera
Université de Montréal

The familiar decomposition
\[f(x) = f_s(x) + f_a(x), \quad 0 \leq x \leq 1 \]
of a given function \(f(x) \) into its symmetric and antisymmetric parts,
\[f_s(x) = \frac{1}{2}(f(x) + f(1-x)), \quad f_a(x) = \frac{1}{2}(f(x) - f(1-x)), \]
can be interpreted as the central decomposition of a class function \(f(x) \) on \(SU(2) \).

In the talk we describe central decomposition of class functions \(f(x_1, x_2, \ldots, x_n) \) on a compact semisimple Lie group \(G \) of rank \(n < \infty \) and of any type, into as many symmetry components as is the order of the center of \(G \). Such decomposition is either continuous if \(x_1, x_2, \ldots, x_n \in \mathbb{R} \), or discrete if the variables specify a point of an \(n \)-dimensional lattice \(L_M \) of symmetry compatible with \(G \) and of any density \(M \).

Examples of central decompositions of functions on \(SU(2) \times SU(2), SU(3), Sp(4), E(6) \), and some useful properties of the component functions will be pointed out.