Isoperimetric problems for singular interactions in the plane

Pavel Exner
exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences
and Doppler Institute, Czech Technical University
Talk overview

Motivation: some classical and less classical isoperimetric results
Talk overview

- **Motivation:** some classical and less classical isoperimetric results
- **Point-interaction polygons:** formulation of the problem
Motivation: some classical and less classical isoperimetric results

Point-interaction polygons: formulation of the problem

A geometric reformulation using Krein’s formula (or BS principle) and a convexity argument
Talk overview

- **Motivation:** some classical and less classical isoperimetric results
- **Point-interaction polygons:** formulation of the problem
- **A geometric reformulation** using Krein’s formula (or BS principle) and a convexity argument
- **Existence of a maximizer:** a local result
Talk overview

- **Motivation**: some classical and less classical isoperimetric results

- **Point-interaction polygons**: formulation of the problem

- **A geometric reformulation** using Krein’s formula (or BS principle) and a convexity argument

- **Existence of a maximizer**: a local result

- **A continuous analogue**: δ interaction supported by a loop in the plane
Talk overview

- **Motivation:** some classical and less classical isoperimetric results
- **Point-interaction polygons:** formulation of the problem
- **A geometric reformulation** using Krein’s formula (or BS principle) and a convexity argument
- **Existence of a maximizer:** a local result
- **A continuous analogue:** δ interaction supported by a loop in the plane
- **Mean-chord inequalities:** what they are and some of their elementary properties
Talk overview

- **Motivation:** some classical and less classical isoperimetric results
- **Point-interaction polygons:** formulation of the problem
- **A geometric reformulation** using Krein’s formula (or BS principle) and a convexity argument
- **Existence of a maximizer:** a local result
- **A continuous analogue:** δ interaction supported by a loop in the plane
- **Mean-chord inequalities:** what they are and some of their elementary properties
- **Existence of a maximizer:** a local “continuous” result
Talk overview

Motivation: some classical and less classical isoperimetric results

Point-interaction polygons: formulation of the problem

A geometric reformulation using Krein’s formula (or BS principle) and a convexity argument

Existence of a maximizer: a local result

A continuous analogue: δ interaction supported by a loop in the plane

Mean-chord inequalities: what they are and some of their elementary properties

Existence of a maximizer: a local “continuous” result

Open questions
Motivation

Isoperimetric problems are traditional in mathematical physics. Recall, e.g., the *Faber-Krahn inequality* for the Dirichlet Laplacian \(-\Delta^M_D\) in a compact \(M \subset \mathbb{R}^2\): among all regions with a fixed area the ground state is *uniquely minimized by the circle*,

\[
\inf \sigma(-\Delta^M_D) \geq \pi j_{0,1}^2 |M|^{-1}
\]

(we restrict to two dimensions in this talk, the analogous results naturally hold for any compact \(M \subset \mathbb{R}^d, d \geq 3\))
Motivation

Isoperimetric problems are traditional in mathematical physics. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta^D_M$ in a compact $M \subset \mathbb{R}^2$: among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$\inf \sigma(-\Delta^D_M) \geq \pi j_{0,1}^2 |M|^{-1}$$

(we restrict to two dimensions in this talk, the analogous results naturally hold for any compact $M \subset \mathbb{R}^d$, $d \geq 3$)

Another classical example is the PPW conjecture proved by Ashbaugh and Benguria: in the same situation we have

$$\frac{\lambda_2(M)}{\lambda_1(M)} \leq \left(\frac{j_{1,1}}{j_{0,1}}\right)^2$$
However, topology is important

If M is not simply connected, rotational symmetry may again lead to an extremum but its nature can be different. Recall a *strip of fixed length and width* [E.-Harrell-Loss’99]

<ground state of\> < ground state of> whenever the strip is not a circular annulus
However, topology is important

If M is not simply connected, rotational symmetry may again lead to an extremum but its nature can be different. Recall a *strip of fixed length and width* [E.-Harrell-Loss’99]

![ground state of a non-annular strip](image)

whenever the strip is not a circular annulus

Another example is a *circular obstacle in circular cavity* [Harrell-Kröger-Kurata’01]

![ground state of a circular cavity with a circular obstacle](image)

whenever the obstacle is off center
Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) potential. To see what will happen we will analyze two models:
Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) potential. To see what will happen we will analyze two models:

First we take the simplest possible example where the confinement is due to a closed array of δ potentials, so the Hamiltonian can be written formally as

\[-\Delta + \tilde{\alpha} \sum_{j=1}^{N} \delta(x - y_j) \quad \text{in} \quad L^2(\mathbb{R}^2),\]

where the \(y_j\)'s are vertices of an equilateral polygon \(\mathcal{P}_N\).
Potential confinement

The topological distinction loses meaning if the particle is kept in a region by a (regular or singular) potential. To see what will happen we will analyze two models:

First we take the simplest possible example where the confinement is due to a closed array of δ potentials, so the Hamiltonian can be written formally as

\[-\Delta + \tilde{\alpha} \sum_{j=1}^{N} \delta(x - y_j) \quad \text{in} \quad L^2(\mathbb{R}^2),\]

where the \(y_j\)'s are vertices of an equilateral polygon \(\mathcal{P}_N\).

Next we will consider an attractive δ potential supported by a closed loop \(\Gamma\) of fixed length, so formally we have

\[-\Delta - \alpha \delta(x - \Gamma) \quad \text{in} \quad L^2(\mathbb{R}^2)\]
Remarks

The two examples are related yet different in the character of the coupling, due the codimension of the interaction support. Roughly speaking, the 2D point interactions are a lot “more singular”
Remarks

The two examples are related yet different in the character of the coupling, due the codimension of the interaction support. Roughly speaking, the 2D point interactions are a lot “more singular”

The Dirichlet annulus result suggests that for strong attraction the shape with the maximum symmetry, respectively a regular polygon \tilde{P}_N of the edge length ℓ with vertices lying on a circle of radius $\ell \left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a circle will be the ground-state maximizer
Remarks

- The two examples are related yet different in the character of the coupling, due the codimension of the interaction support. Roughly speaking, the 2D point interactions are a lot “more singular”

- The Dirichlet annulus result suggests that for strong attraction the shape with the maximum symmetry, respectively a regular polygon \tilde{P}_N of the edge length ℓ with vertices lying on a circle of radius $\ell \left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a circle will be the ground-state maximizer

- It is not apriori clear whether the same is true for any coupling (in our models the ground state always exists)
Remarks

- The two examples are related yet different in the character of the coupling, due the *codimension* of the interaction support. Roughly speaking, the 2D point interactions are a lot “more singular”

- The Dirichlet annulus result suggests that for *strong attraction* the shape with the maximum symmetry, respectively a *regular polygon* \tilde{P}_N of the edge length ℓ with vertices lying on a circle of radius $\ell \left(2 \sin \frac{\pi}{N}\right)^{-1}$, and a *circle* will be the ground-state maximizer

- It is not apriori clear whether the same is true for *any coupling* (in our models the ground state always exists)

- There are extensions to *higher dimension*, which will mentioned later at appropriate places
A preliminary: 2D point interactions

Fixing the site y and “coupling constant” α we define them by b.c. which change \textit{locally} the domain of $-\Delta$: we require

$$\psi(x) = -\frac{1}{2\pi} \log |x - y| L_0(\psi, y) + L_1(\psi, y) + O(|x - y|),$$

where the generalized b.v. $L_0(\psi, y)$ and $L_1(\psi, y)$ satisfy

$$L_1(\psi, y) + 2\pi \alpha L_0(\psi, y) = 0, \quad \alpha \in \mathbb{R}.$$
A preliminary: 2D point interactions

Fixing the site \(y \) and “coupling constant” \(\alpha \) we define them by b.c. which change \textit{locally} the domain of \(-\Delta\): we require

\[
\psi(x) = -\frac{1}{2\pi} \log|x - y| L_0(\psi, y) + L_1(\psi, y) + O(|x - y|),
\]

where the generalized b.v. \(L_0(\psi, y) \) and \(L_1(\psi, y) \) satisfy

\[
L_1(\psi, y) + 2\pi \alpha L_0(\psi, y) = 0, \quad \alpha \in \mathbb{R}
\]

In this way we define our Hamiltonian \(-\Delta_{\alpha,\mathcal{P}_N}\) in \(L^2(\mathbb{R}^2)\) with \(N\) point interactions. We have \(\sigma_{\text{disc}}(-\Delta_{\alpha,\mathcal{P}_N}) \neq \emptyset\), i.e.

\[
\epsilon_1 \equiv \epsilon_1(\alpha, \mathcal{P}_N) := \inf \sigma(-\Delta_{\alpha,\mathcal{P}_N}) < 0,
\]

which is always true in two dimensions – cf. [AGHH’88, 05]
The point-interaction result

Theorem [E.’05]: Under the stated conditions, $\epsilon_1(\alpha, \mathcal{P}_N)$ is for fixed α and ℓ *locally sharply maximized* by a regular polygon, $\mathcal{P}_N = \tilde{\mathcal{P}}_N$.
The point-interaction result

Theorem [E.’05]: Under the stated conditions, $\epsilon_1(\alpha, \mathcal{P}_N)$ is for fixed α and ℓ locally sharply maximized by a regular polygon, $\mathcal{P}_N = \tilde{\mathcal{P}}_N$.

Proof will be reduced to the following geometric problem:
Let \mathcal{P}_N be an equilateral polygon. Given a fixed integer $m = 2, \ldots, \lceil \frac{1}{2} N \rceil$ we denote by \mathcal{D}_m the sum of lengths of all m-diagonals, i.e. we put $\mathcal{D}_m := \sum_{i=1}^{N} |y_i - y_{i+m}|$

$D^1_{N,\ell}(m)$ The quantity \mathcal{D}_m is, in the set of equilateral polygons $\mathcal{P}_N \subset \mathbb{R}^2$ with a fixed edge length $\ell > 0$, uniquely maximized by $\tilde{\mathcal{D}}_m$ referring to the (family of) regular polygon(s) $\tilde{\mathcal{P}}_N$.
Geometric reformulation

By Krein's formula, the spectral condition is reduced to an algebraic problem. Using $k = i\kappa$ with $\kappa > 0$, we find the ev's of our operator from

$$\det \Gamma_k = 0 \quad \text{with} \quad (\Gamma_k)_{ij} := (\alpha - \xi^k)\delta_{ij} - (1 - \delta_{ij})g^k_{ij},$$

where the off-diagonal elements are $g^k_{ij} := G_k(y_i - y_j)$, or equivalently

$$g^k_{ij} = \frac{1}{2\pi} K_0(\kappa|y_i - y_j|)$$

and the regularized Green's function at the interaction site is

$$\xi^k = -\frac{1}{2\pi} \left(\ln \frac{\kappa}{2} + \gamma_E \right)$$
Geometric reformulation, continued

The ground state refers to the point where the lowest ev of $\Gamma_{i\kappa}$ vanishes. Using smoothness and monotonicity of the κ-dependence we have to check that

$$\min \sigma(\Gamma_{i\kappa_1}) < \min \sigma(\tilde{\Gamma}_{i\kappa_1})$$

holds locally for $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$, where $-\tilde{\kappa}_1^2 := \epsilon_1(\alpha, \tilde{\mathcal{P}}_N)$.
Geometric reformulation, continued

The ground state refers to the point where the \textit{lowest} ev of Γ_{κ} vanishes. Using smoothness and monotonicity of the κ-dependence we have to check that

$$\min \sigma(\Gamma_{i\kappa_1}) < \min \sigma(\tilde{\Gamma}_{i\tilde{\kappa}_1})$$

holds locally for $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$, where $-\tilde{\kappa}_1^2 := \epsilon_1(\alpha, \tilde{\mathcal{P}}_N)$

There is a \textit{one-to-one relation} between an ef $c = (c_1, \ldots, c_N)$ of $\Gamma_{i\kappa}$ at that point and the corresponding ef of $-\Delta_{\alpha, \mathcal{P}_N}$ given by $c \leftrightarrow \sum_{j=1}^{N} c_j G_{ij}(\cdot - y_j)$, up to normalization. In particular, the lowest ev of $\tilde{\Gamma}_{i\tilde{\kappa}_1}$ corresponds to the eigenvector $\tilde{\phi}_1 = N^{-1/2}(1, \ldots, 1)$. Hence

$$\min \sigma(\tilde{\Gamma}_{i\tilde{\kappa}_1}) = (\tilde{\phi}_1, \tilde{\Gamma}_{i\tilde{\kappa}_1} \tilde{\phi}_1) = \alpha - \xi^{i\tilde{\kappa}_1} - \frac{2}{N} \sum_{i<j} \tilde{g}_{ij}^{i\tilde{\kappa}_1}$$
Geometric reformulation, continued

On the other hand, we have $\min \sigma(\Gamma \tilde{\kappa}_1) \leq (\tilde{\phi}_1, \Gamma \tilde{\kappa}_1 \tilde{\phi}_1)$, and therefore it is sufficient to check that

$$\sum_{i<j} G_{i\kappa}(y_i - y_j) > \sum_{i<j} G_{i\kappa}(\tilde{y}_i - \tilde{y}_j)$$

holds for all $\kappa > 0$ and $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$.
Geometric reformulation, continued

On the other hand, we have \(\min \sigma(\Gamma_{i\kappa_1}) \leq (\tilde{\phi}_1, \Gamma_{i\kappa_1}\tilde{\phi}_1) \), and therefore it is sufficient to check that

\[
\sum_{i<j} G_{i\kappa}(y_i - y_j) > \sum_{i<j} G_{i\kappa}(\tilde{y}_i - \tilde{y}_j)
\]

holds for all \(\kappa > 0 \) and \(\mathcal{P}_N \neq \tilde{\mathcal{P}}_N \). Call \(\ell_{ij} := |y_i - y_j| \) and \(\tilde{\ell}_{ij} := |\tilde{y}_i - \tilde{y}_j| \) and define \(F : (\mathbb{R}_+)^{N(N-3)/2} \to \mathbb{R} \) by

\[
F(\{\ell_{ij}\}) := \sum_{m=2}^{[N/2]} \sum_{|i-j|=m} \left[G_{i\kappa}(\ell_{ij}) - G_{i\kappa}(\tilde{\ell}_{ij}) \right];
\]

Using the convexity of \(G_{i\kappa}(\cdot) \) for a fixed \(\kappa > 0 \) we get

\[
F(\{\ell_{ij}\}) \geq \sum_{m=2}^{[N/2]} \nu_m \left[G_{i\kappa} \left(\frac{1}{\nu_m} \sum_{|i-j|=m} \ell_{ij} \right) - G_{i\kappa}(\tilde{\ell}_{1,1+m}) \right],
\]

where \(\nu_n \) is the number of the appropriate diagonals.
Since $G_{ik}(\cdot)$ is also \textit{monotonously decreasing} in $(0, \infty)$, we need

$$\tilde{\ell}_{1,m+1} \geq \frac{1}{\nu_n} \sum_{|i-j|=m} \ell_{ij}$$

with the sharp inequality for at least one m if $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$. In this way the problem becomes \textbf{purely geometric}
Since \(G_{i_k}(\cdot) \) is also \textit{monotonously decreasing} in \((0, \infty)\), we need

\[
\tilde{\ell}_{1,m+1} \geq \frac{1}{\nu_n} \sum_{|i-j|=m} \ell_{ij}
\]

with the sharp inequality for at least one \(m \) if \(P_N \neq \tilde{P}_N \). In this way the problem becomes \textit{purely geometric}.

The claim we made is then implied by the following result:

Proposition: The property \(D_{N,\ell}^1(m) \) holds \textit{locally} for any \(m = 2, \ldots, [\frac{1}{2}N] \)
Geometric reformulation, continued

Since $G_{ik}(\cdot)$ is also monotonously decreasing in $(0, \infty)$, we need

$$\tilde{\ell}_{1,m+1} \geq \frac{1}{\nu_n} \sum_{|i-j|=m} \ell_{ij}$$

with the sharp inequality for at least one m if $\mathcal{P}_N \neq \tilde{\mathcal{P}}_N$. In this way the problem becomes purely geometric.

The claim we made is then implied by the following result:

Proposition: The property $D^{1}_{N,\ell}(m)$ holds locally for any $m = 2, \ldots, \lfloor \frac{1}{2}N \rfloor$

Remark: The argument carries through for point interactions in \mathbb{R}^3 because the Green’s function is again convex and monotonous.
We are looking for constrained local maxima of the function

\[
f_m : f_m(y_1, \ldots, y_N) = \frac{1}{N} \sum_{i=1}^{N} |y_i - y_{i+m}|
\]

with \(g_i(y_1, \ldots, y_n) := \ell - |y_i - y_{i+1}| = 0, \ i = 1, \ldots, N \). There are in fact \((N - 2)(d - 1) - 1\) independent variables because \(2d - 1\) parameters are related to Euclidean transformations.
Local validity of $D_{N, \ell}^1(m)$

We are looking for constrained local maxima of the function

$$f_m : f_m(y_1, \ldots, y_N) = \frac{1}{N} \sum_{i=1}^{N} |y_i - y_{i+m}|$$

with $g_i(y_1, \ldots, y_n) := \ell - |y_i - y_{i+1}| = 0$, $i = 1, \ldots, N$. There are in fact $(N - 2)(d - 1) - 1$ independent variables because $2d - 1$ parameters are related to Euclidean transformations.

It is straightforward to check that $\nabla_j K_m(y_1, \ldots, y_N)$ vanish for a regular polygon, $K_m := f_m + \sum_{r=1}^{N} \lambda_r g_r$, with all the Lagrange multipliers taking the same value

$$\lambda = \frac{\sigma_m}{N \gamma_m} \quad \text{with} \quad \sigma_m := \frac{\sin^2 \frac{\pi m}{N}}{\sin^2 \frac{\pi}{N}}, \quad \gamma_m := \ell^{-1} |\tilde{y}_j - \tilde{y}_j \pm m|$$
Local validity of $D_{N,\ell}(m)$, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$\xi \mapsto S_m[\xi] := \sum_j \left\{ |\xi_j - \xi_{j+m}|^2 - \sigma_m |\xi_j - \xi_{j+1}|^2 \right\}$$

on \mathbb{R}^{2N} (the case $m = 2$ needs an additional argument)
Local validity of $D^1_{N,\ell}(m)$, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$\xi \mapsto S_m[\xi] := \sum_j \{ |\xi_j - \xi_{j+m}|^2 - \sigma_m |\xi_j - \xi_{j+1}|^2 \}$$

on \mathbb{R}^{2N} (the case $m = 2$ needs an additional argument).

The two parts can be simultaneously diagonalized; using their ev’s one rewrites the condition as the inequality

$$U_{m-1} \left(\cos \frac{\pi}{N} \right) > \left| U_{m-1} \left(\cos \frac{\pi r}{N} \right) \right|, \ r = 2, \ldots, m - 1,$$

for Chebyshev polynomials of the second kind which can be checked directly □
Attractive δ loops

To formulate the continuous analogue we have first to give meaning the formal operator

$$H_{\alpha, \Gamma} = -\Delta - \alpha \delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^2)$, where Γ is a loop in the plane; we suppose that it has no zero-angle self-intersections.
Attractive δ loops

To formulate the continuous analogue we have first to give meaning the formal operator

$$H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^2)$, where Γ is a loop in the plane; we suppose that it has no zero-angle self-intersections

$H_{\alpha,\Gamma}$ can be naturally associated with the quadratic form,

$$\psi \mapsto \|\nabla \psi\|_{L^2(\mathbb{R}^2)}^2 - \alpha \int_{\Gamma} |\psi(x)|^2 dx,$$

which is closed and below bounded in $W^{1,2}(\mathbb{R}^2)$; the second term makes sense in view of Sobolev embedding. This definition also works for various “wilder” sets Γ.
Definition by boundary conditions

If \(\Gamma \) is \textit{piecewise smooth with no cusps} we can use an \textit{alternative definition} by boundary conditions: \(H_{\alpha, \Gamma} \) acts as \(-\Delta\) on functions from \(W^{2,1}_{\text{loc}}(\mathbb{R}^2 \setminus \Gamma) \), which are continuous and exhibit a normal-derivative jump,

\[
\left. \frac{\partial \psi}{\partial n}(x) \right|_+ - \left. \frac{\partial \psi}{\partial n}(x) \right|_- = -\alpha \psi(x)
\]
Definition by boundary conditions

If Γ is piecewise smooth with no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W^{2,1}_{\text{loc}}(\mathbb{R}^2 \setminus \Gamma)$, which are continuous and exhibit a normal-derivative jump,

$$\frac{\partial \psi}{\partial n}(x) \bigg|_+ - \frac{\partial \psi}{\partial n}(x) \bigg|_- = -\alpha \psi(x)$$

Remarks:

- this definition has an illustrative meaning which corresponds to a δ potential in the cross cut of Γ

- using the quadratic form associated with $H_{\alpha, \Gamma}$ one can check directly that the discrete spectrum is not void for any $\alpha > 0$; one has, of course, $\sigma_{\text{ess}}(H_{\alpha, \Gamma}) = [0, \infty)$
The loop result

Let $\Gamma : [0, L] \rightarrow \mathbb{R}^2$ be a closed curve, $\Gamma(0) = \Gamma(L)$, parametrized by its arc length, which is C^1-smooth, piecewise C^2, and has no cusps. We will always consider classes of Euclidean transforms of Γ; it is clear that the circle class, $\mathcal{C} := \{ ((L/2\pi) \cos s, (L/2\pi) \sin s) : s \in [0, L] \}$, belongs to this family.
The loop result

Let $\Gamma : [0, L] \rightarrow \mathbb{R}^2$ be a closed curve, $\Gamma(0) = \Gamma(L)$, parametrized by its arc length, which is C^1-smooth, piecewise C^2, and has no cusps. We will always consider classes of Euclidean transforms of Γ; it is clear that the circle class, $C := \{ (L/2\pi) \cos s, (L/2\pi) \sin s : s \in [0, L] \}$, belongs to this family.

Theorem [E.’05]: Within the specified class of curves,

$$
\epsilon_1 \equiv \epsilon_1(\alpha, \Gamma) := \inf \sigma \left(H_{\alpha, \Gamma} \right)
$$

is for any fixed $\alpha > 0$ and $L > 0$ locally sharply maximized by a circle, $\Gamma = C$.
We employ the generalized Birman-Schwinger principle [BEKŠ′94]. One starts from the free resolvent R^k_0 which is an integral operator in $L^2(\mathbb{R}^2)$ with the kernel

$$G_k(x-y) = \frac{i}{4} H^{(1)}_0(k|x-y|)$$
We employ the generalized Birman-Schwinger principle [BEKŠ’94]. One starts from the free resolvent R^k_0 which is an integral operator in $L^2(\mathbb{R}^2)$ with the kernel

$$G_k(x-y) = \frac{i}{4} H_0^{(1)}(k|x-y|)$$

Then we introduce embedding operators associated with R^k_0 for measures μ, ν which are the Dirac measure m supported by Γ and the Lebesgue measure dx on \mathbb{R}^2; by $R^k_{\nu,\mu}$ we denote the integral operator from $L^2(\mu)$ to $L^2(\nu)$ with the kernel G_k, i.e. we suppose that

$$R^k_{\nu,\mu} \phi = G_k * \phi \mu$$

holds ν-a.e. for all $\phi \in D(R^k_{\nu,\mu}) \subset L^2(\mu)$.
Proposition [BEKŠ’94, Posilicano’04]:

(i) There is $\kappa_0 > 0$ s.t. $I - \alpha R^{i\kappa}_{m,m}$ on $L^2(m)$ has a bounded inverse for $\kappa \geq \kappa_0$.

(ii) Let $\text{Im } k > 0$ and $I - \alpha R^k_{m,m}$ be invertible with

$$R^k := R^k_0 + \alpha R^k_{dx,m} [I - \alpha R^k_{m,m}]^{-1} R^k_{m, dx}$$

from $L^2(\mathbb{R}^2)$ to $L^2(\mathbb{R}^2)$ everywhere defined. Then k^2 belongs to $\rho(H_\alpha, \Gamma)$ and $(H_\alpha, \Gamma - k^2)^{-1} = R^k$.

(iii) $\dim \ker(H_\alpha, \Gamma - k^2) = \dim \ker(I - \alpha R^k_{m,m})$ for $\text{Im } k > 0$.

(iv) An ef of H_α, Γ associated with k^2 can be written as

$$\psi(x) = \int_0^L R^k_{dx,m}(x, s) \phi(s) \, ds,$$

where ϕ is the corresponding ef of $\alpha R^k_{m,m}$ with the ev one.
BS reformulation, continued

Putting $k = i\kappa$ with $\kappa > 0$ we look thus for solutions to the integral-operator equation

$$\mathcal{R}^{\kappa}_{\alpha, \Gamma} \phi = \phi, \quad \mathcal{R}^{\kappa}_{\alpha, \Gamma}(s, s') := \frac{\alpha}{2\pi} K_0(\kappa|\Gamma(s) - \Gamma(s')|),$$
onumber

on $L^2([0, L])$. The function $\kappa \mapsto \mathcal{R}^{\kappa}_{\alpha, \Gamma}$ is strictly decreasing in $(0, \infty)$ and $\|\mathcal{R}^{\kappa}_{\alpha, \Gamma}\| \to 0$ as $\kappa \to \infty$, hence we seek the point where the largest ev of $\mathcal{R}^{\kappa}_{\alpha, \Gamma}$ crosses one
BS reformulation, continued

Putting $k = i\kappa$ with $\kappa > 0$ we look thus for solutions to the integral-operator equation

$$\mathcal{R}_{\alpha,\Gamma}^\kappa \phi = \phi, \quad \mathcal{R}_{\alpha,\Gamma}^\kappa(s, s') := \frac{\alpha}{2\pi} K_0(\kappa|\Gamma(s) - \Gamma(s')|),$$
onumber

on $L^2([0, L])$. The function $\kappa \mapsto \mathcal{R}_{\alpha,\Gamma}^\kappa$ is strictly decreasing in $(0, \infty)$ and $\|\mathcal{R}_{\alpha,\Gamma}^\kappa\| \to 0$ as $\kappa \to \infty$, hence we seek the point where the largest ev of $\mathcal{R}_{\alpha,\Gamma}^\kappa$ crosses one.

We observe that this ev is simple, since $\mathcal{R}_{\alpha,\Gamma}^\kappa$ is positivity improving and ergodic. The ground state of $H_{\alpha,\Gamma}$ is, of course, also simple. Using its rotational symmetry and the claim (iv) of the Proposition we find that the respective eigenfunction of $\tilde{\mathcal{R}}_{\alpha,\Gamma}^{\tilde{\kappa}_1}$ corresponding to the unit eigenvalue is constant; we can choose it as $\tilde{\phi}_1(s) = L^{-1/2}$.

UAB05 Conference “Differential Equations and Mathematical Physisc”; Birmingham, Al., April 1, 2005 – p.20/40
Then we have

\[
\max \sigma(\mathcal{R}_{\alpha,\mathcal{C}}) = (\tilde{\phi}_1, & \mathcal{R}_{\alpha,\mathcal{C}} \tilde{\phi}_1) = \frac{1}{L} \int_0^L \int_0^L \mathcal{R}_{\alpha,\mathcal{C}}(s, s') \, ds \, ds',
\]

and on the other hand, for the same quantity referring to a general \(\Gamma \) a simple variational estimate gives

\[
\max \sigma(\mathcal{R}_{\alpha,\Gamma}) \geq (\tilde{\phi}_1, & \mathcal{R}_{\alpha,\Gamma} \tilde{\phi}_1) = \frac{1}{L} \int_0^L \int_0^L \mathcal{R}_{\alpha,\Gamma}(s, s') \, ds \, ds'.
\]
Then we have

$$\max \sigma (\mathcal{R}_{\alpha, C}^{\tilde{\kappa}_1}) = (\tilde{\phi}_1, \mathcal{R}_{\alpha, C}^{\tilde{\kappa}_1} \tilde{\phi}_1) = \frac{1}{L} \int_0^L \int_0^L \mathcal{R}_{\alpha, C}^{\tilde{\kappa}_1}(s, s') \, ds \, ds'$$

and on the other hand, for the same quantity referring to a general Γ a simple variational estimate gives

$$\max \sigma (\mathcal{R}_{\alpha, \Gamma}^{\tilde{\kappa}_1}) \geq (\tilde{\phi}_1, \mathcal{R}_{\alpha, \Gamma}^{\tilde{\kappa}_1} \tilde{\phi}_1) = \frac{1}{L} \int_0^L \int_0^L \mathcal{R}_{\alpha, \Gamma}^{\tilde{\kappa}_1}(s, s') \, ds \, ds'$$

Hence it is sufficient to show that

$$\int_0^L \int_0^L K_0(\kappa|\Gamma(s)-\Gamma(s')|) \, ds \, ds' \geq \int_0^L \int_0^L K_0(\kappa|C(s)-C(s')|) \, ds \, ds'$$

holds for all $\kappa > 0$ and Γ in the vicinity of C.

UAB05 Conference “Differential Equations and Mathematical Physisc”; Birmingham, Al., April 1, 2005 – p.21/40
Convexity argument

By a simple change of variables the claim is equivalent to positivity of the functional

\[F_\kappa(\Gamma) := \int_0^{L/2} du \int_0^L ds \left[K_0(\kappa |\Gamma(s+u) - \Gamma(s)|) - K_0(\kappa |C(s+u) - C(s)|) \right] \]

the \(s \)-independent second term is equal to \(K_0(\frac{\kappa L}{\pi} \sin \frac{\pi u}{L}) \)
Convexity argument

By a simple change of variables the claim is equivalent to positivity of the functional

\[F_{\kappa}(\Gamma) := \int_0^{L/2} du \int_0^L \, ds \left[K_0(\kappa|\Gamma(s+u) - \Gamma(s)|) - K_0(\kappa|C(s+u) - C(s)|) \right] ; \]

the \(s \)-independent second term is equal to \(K_0\left(\frac{\kappa L}{\pi} \sin \frac{\pi u}{L}\right) \)

The (strict) convexity of \(K_0 \) yields by means of Jensen inequality the estimate

\[\frac{1}{L} F_{\kappa}(\Gamma) \geq \int_0^{L/2} \left[K_0 \left(\frac{\kappa}{L} \int_0^L \, |\Gamma(s+u) - \Gamma(s)| \, ds \right) - K_0 \left(\frac{\kappa L}{\pi} \sin \frac{\pi u}{L} \right) \right] \, du , \]

where the inequality is sharp unless \(\int_0^L |\Gamma(s+u) - \Gamma(s)| \, ds \) is independent of \(s \).
Monotonicity argument

Finally, we observe that K_0 is decreasing in $(0, \infty)$, hence it is sufficient to check the inequality

$$
\int_0^L |\Gamma(s+u) - \Gamma(s)| \, ds \leq \frac{L^2}{\pi} \sin \frac{\pi u}{L}
$$

for all $u \in (0, \frac{1}{2}L]$ and furthermore, to show that is sharp unless Γ is a circle.
Monotonicity argument

Finally, we observe that K_0 is decreasing in $(0, \infty)$, hence it is sufficient to check the inequality

$$\int_0^L |\Gamma(s+u) - \Gamma(s)| \, ds \leq \frac{L^2}{\pi} \sin \frac{\pi u}{L}$$

for all $u \in (0, \frac{1}{2}L]$ and furthermore, to show that is sharp unless Γ is a circle

Remark: There was nothing *local* so far, hence proving the above inequality for all Γ would give the global result. Likewise, we have not used the C^2 smoothness
Both geometric reformulations have a common feature: for polygons we sum diagonal lengths between vertices whose indices differ by a fixed m, for a loop we integrate chord lengths between points separated by a fixed arc length u.
Mean-chord inequalities

Consider a wider family of inequalities – without knowing whether they are valid. Let \(\Gamma : [0, L] \to \mathbb{R}^2 \) be again a loop in the plane, with unspecified regularity properties. Take all the arcs of \(\Gamma \) having length \(u \in (0, \frac{1}{2} L] \) and write

\[
C^p_L(u) : \quad \int_0^L |\Gamma(s+u) - \Gamma(s)|^p \, ds \leq \frac{L^{1+p}}{\pi^p} \sin^p \frac{\pi u}{L} , \quad p > 0 ,
\]

\[
C^{-p}_L(u) : \quad \int_0^L |\Gamma(s+u) - \Gamma(s)|^{-p} \, ds \geq \frac{\pi^p L^{1-p}}{\sin^p \frac{\pi u}{L}} , \quad p > 0 .
\]
Mean-chord inequalities

Consider a wider family of inequalities – without knowing whether they are valid. Let \(\Gamma : [0, L] \to \mathbb{R}^2 \) be again a loop in the plane, with unspecified regularity properties. Take all the arcs of \(\Gamma \) having length \(u \in (0, \frac{1}{2}L] \) and write

\[
C^p_L(u) : \quad \int_0^L |\Gamma(s+u) - \Gamma(s)|^p \, ds \leq \frac{L^{1+p}}{\pi^p} \sin^p \frac{\pi u}{L}, \quad p > 0,
\]

\[
C^{-p}_L(u) : \quad \int_0^L |\Gamma(s+u) - \Gamma(s)|^{-p} \, ds \geq \frac{\pi^p L^{1-p}}{\sin^p \frac{\pi u}{L}}, \quad p > 0.
\]

A discrete counterpart for an equilateral polygon \(P_N \) of \(N \) vertices \(\{y_n\} \), side length \(\ell > 0 \), and \(m = 1, \ldots, \lfloor \frac{1}{2}N \rfloor \) reads

\[
D^p_{N,\ell}(m) : \quad \sum_{n=1}^{N} |y_{n+m} - y_n|^p \leq \frac{N \ell^p \sin^p \frac{\pi m}{N}}{\sin^p \frac{\pi}{N}}, \quad p > 0,
\]

\[
D^{-p}_{N,\ell}(m) : \quad \sum_{n=1}^{N} |y_{n+m} - y_n|^{-p} \geq \frac{N \sin^p \frac{\pi}{N}}{\ell^p \sin^p \frac{\pi m}{N}}, \quad p > 0.
\]
Observations

The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon \tilde{P}_N, respectively.
Observations

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon \tilde{P}_N, respectively.
- If $p = 0$ the inequalities turn into trivial identities.
Observations

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon \tilde{P}_N, respectively.
- If $p = 0$ the inequalities turn into trivial identities.
- By scaling one can put, for instance, $L = 1$ and $\ell = 1$ without loss of generality.
Observations

- The right-hand sides correspond to the cases with maximum symmetry, i.e. to the circle and regular polygon $\tilde{\mathcal{P}}_N$, respectively.
- If $p = 0$ the inequalities turn into trivial identities.
- By scaling one can put, for instance, $L = 1$ and $\ell = 1$ without loss of generality.
- In the polygon case it is clear that the claim may not be true for $p > 2$ as the example of a rhomboid shows: $D^p_{4,\ell}(2)$ is equivalent to $\sin^p \phi + \cos^p \phi \leq 2^{1-(p/2)}$ for $0 < \phi < \pi$.

Properties and conjecture

Using convexity of \(x \mapsto x^\alpha \) in \((0, \infty)\) for \(\alpha > 1 \) we get

Proposition: \(C_p^L(u) \Rightarrow C_{p'}^L(u) \) and \(D_{N,\ell}^p(m) \Rightarrow D_{N,\ell}^{p'}(m) \) if \(p > p' > 0 \)
Properties and conjecture

Using convexity of $x \mapsto x^\alpha$ in $(0, \infty)$ for $\alpha > 1$ we get

Proposition: $C^p_L(u) \Rightarrow C^{p'}_L(u)$ and $D^p_{N, \ell}(m) \Rightarrow D^{p'}_{N, \ell}(m)$ if $p > p' > 0$

Furthermore, Schwarz inequality implies

Proposition: $C^p_L(u) \Rightarrow C^{-p}_L(u)$ and $D^p_{N, \ell}(m) \Rightarrow D^{-p}_{N, \ell}(m)$

for any $p > 0$
Properties and conjecture

Using convexity of $x \mapsto x^\alpha$ in $(0, \infty)$ for $\alpha > 1$ we get

Proposition: $C^p_L(u) \Rightarrow C^{p'}_L(u)$ and $D^p_{N,\ell}(m) \Rightarrow D^{p'}_{N,\ell}(m)$ if $p > p' > 0$

Furthermore, Schwarz inequality implies

Proposition: $C^p_L(u) \Rightarrow C^{-p}_L(u)$ and $D^p_{N,\ell}(m) \Rightarrow D^{-p}_{N,\ell}(m)$ for any $p > 0$

Conjecture: We expect the above inequalities to be valid for any $p \leq 2$, without substantial regularity restrictions in the continuous case.
What is known for $D_{N,\ell}^{p}(m)$?

We have shown that $D_{N,\ell}^{1}(m)$ holds \textit{locally} for any $m = 2, \ldots, [\frac{1}{2}N]$, i.e. in the vicinity of the regular polygon, and consequently, $D_{N,\ell}^{\pm p}(m)$ holds locally for any $p \in (0, 1]$.
What is known for $D_{N,\ell}^p(m)$?

We have shown that $D_{N,\ell}^1(m)$ holds \emph{locally} for any $m = 2, \ldots, \lfloor \frac{1}{2} N \rfloor$, i.e. in the vicinity of the regular polygon, and consequently, $D_{N,\ell}^{\pm p}(m)$ holds locally for any $p \in (0, 1]$

As for the \emph{global validity} we have a particular result:

Proposition: $D_{N,\ell}^1(2)$ holds \emph{globally}, and so does $D_{N,\ell}^{\pm p}(2)$ for each $p \in (0, 1]$
What is known for $D^p_{N,\ell}(m)$?

We have shown that $D^1_{N,\ell}(m)$ holds locally for any $m = 2, \ldots, \lceil \frac{1}{2} N \rceil$, i.e. in the vicinity of the regular polygon, and consequently, $D^{\pm p}_{N,\ell}(m)$ holds locally for any $p \in (0, 1]$

As for the global validity we have a particular result:

Proposition: $D^1_{N,\ell}(2)$ holds globally, and so does $D^{\pm p}_{N,\ell}(2)$ for each $p \in (0, 1]$

Proof: Call β_i the “bending angle” at i-th vertex, then the mean length of the 2-diagonals is $M_2 = \frac{2\ell}{N} \sum_{i=1}^N \cos \frac{\beta_i}{2}$. Using strict convexity of the function $u \mapsto -\cos \frac{u}{2}$ in $(-\pi, \pi)$ together with $\sum_{i=1}^N \beta_i = 2\pi w$, $w \in \mathbb{Z}$, we find

$$- \sum_{i=1}^N \cos \frac{\beta_i}{2} \geq -N \cos \left(\sum_{i=1}^N \frac{\beta_i}{2} \right) = -N \cos \frac{\pi}{N};$$

the inequality is sharp unless all the β_i's are the same \square
$C^p_L(u)$ in terms of curvature

Under our regularity assumption we can characterize Γ by its (signed) curvature $\gamma := \dot{\Gamma}_2 \ddot{\Gamma}_1 - \dot{\Gamma}_1 \ddot{\Gamma}_2$ which is piecewise continuous in $[0, L]$. Up to Euclidean transf’s we have

$$\Gamma(s) = \left(\int_0^s \cos \beta(s') \, ds', \int_0^s \sin \beta(s') \, ds' \right),$$

where $\beta(s) := \int_0^s \gamma(s') \, ds'$ is bending angle relative to $s = 0$.
\(C^p_L(u) \) in terms of curvature

Under our regularity assumption we can characterize \(\Gamma \) by its (signed) curvature \(\gamma := \dot{\Gamma}_2 \ddot{\Gamma}_1 - \dot{\Gamma}_1 \ddot{\Gamma}_2 \) which is piecewise continuous in \([0, L]\). Up to Euclidean transf’s we have

\[
\Gamma(s) = \left(\int_0^s \cos \beta(s') \, ds', \int_0^s \sin \beta(s') \, ds' \right)
\]

where \(\beta(s) := \int_0^s \gamma(s') \, ds' \) is bending angle relative to \(s = 0 \)

To ensure that the curve is closed, we have to require

\[
\int_0^L \cos \beta(s') \, ds' = \int_0^L \sin \beta(s') \, ds' = 0
\]
$C^p_L(u)$ in terms of curvature

Under our regularity assumption we can characterize Γ by its (signed) curvature $\gamma := \dot{\Gamma}_2 \ddot{\Gamma}_1 - \dot{\Gamma}_1 \ddot{\Gamma}_2$ which is piecewise continuous in $[0, L]$. Up to Euclidean transf's we have

$$\Gamma(s) = \left(\int_0^s \cos \beta(s') \, ds', \int_0^s \sin \beta(s') \, ds' \right),$$

where $\beta(s) := \int_0^s \gamma(s') \, ds'$ is bending angle relative to $s = 0$.

To ensure that the curve is closed, we have to require

$$\int_0^L \cos \beta(s') \, ds' = \int_0^L \sin \beta(s') \, ds' = 0$$

The left-hand side of $C^p_L(u)$ can be now rewritten as

$$c^p_{\Gamma}(u) = \int_0^L ds \left[\int_s^{s+u} ds' \int_s^{s+u} ds'' \cos(\beta(s') - \beta(s'')) \right]^{p/2}$$
Proof of $C^2_L(u)$

It is sufficient to check that $c^2_T(u)$ is maximized by the circle, i.e. by $\beta(s) = \frac{2\pi s}{L}$. Rearranging the integrals we get

$$c^2_T(u) = \int_0^L ds' \int_{s' - u}^{s' + u} ds'' [u - |s' - s''|] \cos(\beta(s') - \beta(s''))$$
Proof of $C_L^2(u)$

It is sufficient to check that $c_T^2(u)$ is maximized by the circle, i.e. by $\beta(s) = \frac{2\pi s}{L}$. Rearranging the integrals we get

$$c_T^2(u) = \int_0^L ds' \int_{s'-u}^{s'+u} ds'' \left[u - |s' - s''| \right] \cos(\beta(s') - \beta(s''))$$

Next we change the integration variables to $x := s' - s''$ and $z := \frac{1}{2}(s' + s'')$, and use the even parity of the functions involved to obtain

$$c_T^2(u) = 2 \int_0^u dx \left(u - x \right) \int_0^L dz \cos \left(\int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} \gamma(s) \, ds \right)$$
A partial global result

In an analogy with $D_{N,\ell}^{1}(2)$ we can get a global result for u small enough:

Proposition: Let Γ have no self-intersections and the inequality $\beta(z + \frac{1}{2}u) - \beta(z - \frac{1}{2}u) \leq \frac{1}{2}\pi$ is valid for all $z \in [0, L]$, then $C_{L}^{2}(u)$ holds.
A partial global result

In an analogy with $D_{N,\ell}^1(2)$ we can get a global result for u small enough:

Proposition: Let Γ have no self-intersections and the inequality $\beta(z + \frac{1}{2}u) - \beta(z - \frac{1}{2}u) \leq \frac{1}{2}\pi$ is valid for all $z \in [0, L]$, then $C_L^2(u)$ holds

Proof: We employ concavity of cosine in $(0, \frac{1}{2}\pi)$ obtaining

$$c_\Gamma^2(u) \leq 2L \int_0^u dx (u - x) \cos \left(\frac{1}{L} \int_0^L dz \int_{z - \frac{1}{2}x}^{z + \frac{1}{2}x} \gamma(s) ds \right)$$

$$= 2L \int_0^u dx (u - x) \cos \frac{2\pi x}{L} = \frac{L^3}{\pi^2} \sin^2 \frac{\pi u}{L},$$

since $\int_0^L \gamma(s) ds = \pm 2\pi$. The function $z \mapsto \int_{z - \frac{1}{2}x}^{z + \frac{1}{2}x} \gamma(s) ds$ is constant for $x \in (0, u)$ iff $\gamma(\cdot)$ is constant, hence the circle gives a sharp maximum. \square
Local validity of $C^2_L(u)$

Proposition: If Γ is C^1, piecewise C^2, the inequality $C^2_L(u)$ holds locally for any $L > 0$ and $u \in (0, \frac{1}{2}L]$, and consequently, $C^{\pm p}_L(u)$ holds locally for any $p \in (0, 2]$.

Proof: Gentle deformations of Γ can be characterized by $(s) = 2L + g(s)$; where g is a piecewise continuous function, small in the sense that $k g k_1 \leq L^1$ and satisfying the condition $\int L g(s) \, ds = 0$. We employ the expansion

$$
\cos 2x L z + 1 2 x z 1 2 x g(s) \, ds
$$

where the error term is a shorthand for $O(k L g^3 k)$.
Local validity of $C_L^2(u)$

Proposition: If Γ is C^1, piecewise C^2, the inequality $C_L^2(u)$ holds locally for any $L > 0$ and $u \in (0, \frac{1}{2}L]$, and consequently, $C_L^{p}(u)$ holds locally for any $p \in (0, 2]$

Proof: Gentle deformations of \mathcal{C} can be characterized by

$$\gamma(s) = \frac{2\pi}{L} + g(s),$$

where g is a piecewise continuous function, small in the sense that $\|g\|_\infty \ll L^{-1}$ and satisfying the condition

$$\int_0^L g(s) \, ds = 0.$$

We employ the expansion

$$\cos \frac{2\pi x}{L} - \sin \frac{2\pi x}{L} \int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \, ds - \frac{1}{2} \cos \frac{2\pi x}{L} \left(\int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \, ds \right)^2 + \mathcal{O}(g^3),$$

where the error term is a shorthand for $\mathcal{O}(\|Lg\|_\infty^3)$.
Proof, continued

Substituting into the expression for \(c^2_1(u) \) we find that the term linear in \(g \) vanishes, because

\[
\int_0^L dz \int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \, ds = \int_0^L ds \, g(s) \int_{s-\frac{1}{2}x}^{s+\frac{1}{2}x} dz = 0 ,
\]
Substituting into the expression for $c^2_\Gamma(u)$ we find that the term linear in g vanishes, because

$$\int_0^L dz \int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \, ds = \int_0^L ds g(s) \int_{s-\frac{1}{2}x}^{s+\frac{1}{2}x} dz = 0,$$

Hence the deformation shows in the 2nd order term only,

$$c^2_\Gamma(u) = \frac{L^3}{\pi^2} \sin^2 \frac{\pi u}{L} - I_g(u) + O(g^3),$$

where

$$I_g(u) := \int_0^u dx (u-x) \cos \frac{2\pi x}{L} \int_0^L dz \left(\int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \, ds \right)^2$$

and we need to show that $I_g(u) > 0$ unless $g = 0$ identically. Notice that for $u \leq \frac{1}{4}L$ this property holds trivially.
Proof, continued

For \(u \in \left(\frac{1}{4}L, \frac{1}{2}L \right] \) we notice that \(g \) is periodic and piecewise \(C^0 \), so we write it as Fourier series with zero term missing,

\[
g(s) = \sum_{n=1}^{\infty} \left(a_n \sin \frac{2\pi ns}{L} + b_n \cos \frac{2\pi ns}{L} \right),
\]

where \(\sum_n (a_n^2 + b_n^2) < \infty \) (and small).
Proof, continued

For \(u \in (\frac{1}{4} L, \frac{1}{2} L] \) we notice that \(g \) is periodic and piecewise \(C^0 \), so we write it as Fourier series with zero term missing,

\[
g(s) = \sum_{n=1}^{\infty} \left(a_n \sin \frac{2\pi ns}{L} + b_n \cos \frac{2\pi ns}{L} \right),
\]

where \(\sum_n (a_n^2 + b_n^2) < \infty \) (and small). We have

\[
\int_{z-\frac{1}{2}x}^{z+\frac{1}{2}x} g(s) \, ds = \frac{L}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(a_n \sin \frac{2\pi nz}{L} + b_n \cos \frac{2\pi nz}{L} \right) \sin \frac{\pi nx}{L},
\]

so using orthogonality of the Fourier basis one gets

\[
I_g(u) = \int_0^u dx \, (u - x) \cos \frac{2\pi x}{L} \sum_{n=1}^{\infty} \frac{L^3}{2\pi^2} \frac{a_n^2 + b_n^2}{n^2} \sin \frac{\pi nx}{L}.
\]
Summation and integration can be interchanged giving

\[I_g(u) = \frac{L^5}{2\pi^4} \sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{n^2} F_n \left(\frac{\pi u}{L} \right), \]

where

\[F_n(v) := \int_0^v (v - y) \cos 2y \sin ny \, dy. \]
Proof, continued

Summation and integration can be interchanged giving

\[I_g(u) = \frac{L^5}{2\pi^4} \sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{n^2} F_n \left(\frac{\pi u}{L} \right), \]

where

\[F_n(v) := \int_0^v (v - y) \cos 2y \sin ny \, dy. \]

These integrals are equal to

\[F_1(v) = \frac{1}{18} (9 \sin v - \sin 3v - 6v), \]
\[F_2(v) = \frac{1}{32} (4v - \sin 4v), \]
\[F_n(v) = \frac{nv}{n^2 - 4} - \frac{\sin(n - 2)v}{2(n - 2)^2} - \frac{\sin(n + 2)v}{2(n + 2)^2}, \quad n \geq 3. \]

It is easy to see that \(F_n(v) > 0 \) for \(v > 0 \) and \(n \geq 2 \) and \(F_1(v) > 0 \) in the interval \((0, \frac{\pi}{2})\). Thus we have found that \(I_g(u) > 0 \) unless all the coefficients \(a_n, b_n \) are zero. \(\square \)
Remark

One may wonder what happened with the \textit{closedness requirement}, \(\int_0^L \cos \beta(s') \, ds' = \int_0^L \sin \beta(s') \, ds' = 0 \). We proved the claim using the weaker property \(\beta(0) = \beta(L) \). This is possible \textit{for small deformations only}!
Remark

One may wonder what happened with the *closedness requirement*, \(\int_0^L \cos \beta(s') \, ds' = \int_0^L \sin \beta(s') \, ds' = 0 \). We proved the claim using the weaker property \(\beta(0) = \beta(L) \). This is possible *for small deformations only!*

As an illustration, consider \(\Gamma \) in the form of an “overgrown paperclip” which satisfies the condition \(\beta(0) = \beta(L) \) but not the *closedness requirement*. Making the U-turns small one can get \(c_\Gamma^2 \left(\frac{1}{2} L \right) \) *arbitrarily close to* \(\frac{1}{3} L^3 \) which is, of course, larger than \(L^3 / \pi^2 \).
Global validity of $\mathcal{C}^2_L(u)$: an example

Let Γ be a curve consisting of two circular segments of radius $R > \frac{L}{4\pi}$, i.e. it is given by the equations

$$\left(x \pm R \cos \frac{L}{2R}\right)^2 + y^2 = R^2 \quad \text{for} \quad \pm x \geq 0$$

being “lens-shaped” for $R > \frac{L}{2\pi}$, “apple-shaped” for $\frac{L}{4\pi} < R < \frac{L}{2\pi}$ “apple-shaped” and a circle for $R = \frac{L}{2\pi}$
Example, continued

It is straightforward exercise to compute

$$c_\Gamma^2(u) = 8R^3 \left\{ \frac{L}{2R} \sin^2 \frac{u}{2R} + 4 \left(\frac{u}{2R} \cos \frac{u}{2R} - \sin \frac{u}{2R} \right) \cos \frac{L}{4R} \cos \frac{L - 2u}{4R} \right\}$$

Let us plot $c_\Gamma^2(u) \left(\frac{L^3}{\pi^2} \sin^2 \frac{\pi u}{L} \right)^{-1}$ for $L = 1$ w.r.t. R and u
Example, continued

It is straightforward exercise to compute

\[c_\Gamma^2(u) = 8R^3 \left\{ \frac{L}{2R} \sin^2 \frac{u}{2R} + 4 \left(\frac{u}{2R} \cos \frac{u}{2R} - \sin \frac{u}{2R} \right) \cos \frac{L}{4R} \cos \frac{L - 2u}{4R} \right\} \]

Let us plot \(c_\Gamma^2(u) \left(\frac{L^3}{\pi^2} \sin^2 \frac{\pi u}{L} \right)^{-1} \) for \(L = 1 \) w.r.t. \(R \) and \(u \)
Some open questions

- Prove $D^2_{N,\ell}(m)$, locally and globally
Some open questions

- Prove $D_{N,\ell}^2(m)$, locally and globally
- Prove *global* validity of $C^p_L(u)$
Some open questions

- Prove $D^2_{N,\ell}(m)$, locally and globally

- Prove \textit{global} validity of $C^p_L(u)$

- Prove \textit{higher-dimensional analogues} of these inequalities for loops in \mathbb{R}^d (notice that the local proof of $D^1_{N,\ell}(m)$ works for polygons in any \mathbb{R}^d)
Some open questions

- Prove $D^2_{N,\ell}(m)$, locally and globally
- Prove *global* validity of $C^p_L(u)$
- Prove *higher-dimensional analogues* of these inequalities for loops in \mathbb{R}^d (notice that the local proof of $D^1_{N,\ell}(m)$ works for polygons in any \mathbb{R}^d)
- Prove *higher-dimensional analogues* of these inequalities for *codimension-one surfaces* in \mathbb{R}^d
Some open questions

- Prove $D_{N,\ell}^2(m)$, locally and globally

- Prove *global* validity of $C_L^p(u)$

- Prove *higher-dimensional analogues* of these inequalities for loops in \mathbb{R}^d (notice that the local proof of $D_{N,\ell}^1(m)$ works for polygons in any \mathbb{R}^d)

- Prove *higher-dimensional analogues* of these inequalities for codimension-one surfaces in \mathbb{R}^d

- Find maximizers in classes not containing C or P_N
Some open questions

- Prove $D^2_{N,\ell}(m)$, locally and globally
- Prove global validity of $C^p_L(u)$
- Prove higher-dimensional analogues of these inequalities for loops in \mathbb{R}^d (notice that the local proof of $D^1_{N,\ell}(m)$ works for polygons in any \mathbb{R}^d)
- Prove higher-dimensional analogues of these inequalities for codimension-one surfaces in \mathbb{R}^d
- Find maximizers in classes not containing C or \mathcal{P}_N
- Find maximizers if the interaction strength changes along the curve (or surface), so the problem ceases to be purely geometric
The talk was based on

The talk was based on

for more information see http://www.ujf.cas.cz/~exner