Geometrically induced bound states in Dirichlet layers

Pavel Exner

in collaboration with David Krejčiřík, Pierre Duclos and Gilles Carron

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences
and Doppler Institute, Czech Technical University
Talk overview

- Physical and mathematical motivation
Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
- Sufficient conditions for existence of bound states
Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
- Sufficient conditions for existence of bound states
- Topologically nontrivial quantum layers
Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
- Sufficient conditions for existence of bound states
- Topologically nontrivial quantum layers
- Weak coupling: mildly curved layers
Talk overview

- Physical and mathematical motivation
- Preliminaries: geometry of a curved layer
- Equivalent forms of the Hamiltonian
- Sufficient conditions for existence of bound states
- Topologically nontrivial quantum layers
- Weak coupling: mildly curved layers
- Some open questions
Motivation

Problem: properties of a quantum particle confined to a *curved layer* of fixed width built over a surface

- Considered already long time ago in connection with *quantization on manifolds* in formal limit $a \to 0$
Motivation

Problem: properties of a quantum particle confined to a *curved layer* of fixed width built over a surface

- Considered already long time ago in connection with *quantization on manifolds* in formal limit $a \to 0$
- See [Jensen-Koppe ’71], [Tolar ’78], [da Costa ’81], ...
Motivation

Problem: properties of a quantum particle confined to a *curved layer* of fixed width built over a surface

Considered already long time ago in connection with *quantization on manifolds* in formal limit $a \to 0$

See [Jensen-Koppe ’71], [Tolar ’78], [da Costa ’81], ...

Recently made rigorous in [Froese-Herbst ’01] with a *harmonic confinement*
Motivation

Problem: properties of a quantum particle confined to a \textit{curved layer} of fixed width built over a surface

- Considered already long time ago in connection with \textit{quantization on manifolds} in formal limit $a \rightarrow 0$

- See [Jensen-Koppe ’71], [Tolar ’78], [da Costa ’81], ...

- Recently made rigorous in [Froese-Herbst ’01] with a \textit{harmonic confinement}

- We are interested primarily in relations between \textit{geometry} and \textit{spectral properties}, i.e. a trademark topic of mathematical physics
Motivation: semiconductor films

A natural model for *dilute electron gas* in *semiconductor films* built on a *curved substrate*. Recall that a typical mesoscopic system has

- **small size**: submicron, down to nanometers
- **high purity**: mean free path \gg system size
- **crystalline fabric**: admits effective mass description
Motivation: semiconductor films

A natural model for *dilute electron gas* in *semiconductor films* built on a *curved substrate*. Recall that a typical mesoscopic system has

- **small size**: submicron, down to nanometers
- **high purity**: mean free path \gg system size
- **crystalline fabric**: admits effective mass description

Consequently, neglecting electron-electron coupling one can a *quantum waveguide model* in which a single electron is described by Schrödinger equation with constraints corresponding to the system volume.
Motivation: semiconductor films

A natural model for *dilute electron gas* in *semiconductor films* built on a *curved substrate*. Recall that a typical mesoscopic system has

- **small size**: submicron, down to nanometers
- **high purity**: mean free path \gg system size
- **crystalline fabric**: admits effective mass description

Consequently, neglecting electron-electron coupling one can a *quantum waveguide model* in which a single electron is described by Schrödinger equation with constraints corresponding to the system volume.

One typically one assumes *hard wall (Dirichlet)* boundary conditions. It is an idealization, in reality rather a finite potential jump.
Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling *quantum wires*. Recall some results:

- **Bending** means *binding*, i.e. nonzero curvature gives rise to effective attractive interaction.
Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- **Bending** means *binding*, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is **robust**, weak regularity requirements, even a slight bend can create bound states
Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling *quantum wires*. Recall some results:

- **Bending** means *binding*, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is *robust*, weak regularity requirements, even a slight bend can create bound states
- **Weak coupling**: energy $\sim (\text{bending angle})^4$
Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- **Bending** means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- **Weak coupling**: energy $\sim (\text{bending angle})^4$
- \exists bounds on spectral threshold, # of bound states
Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- **Bending** means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- **Weak coupling:** energy $\sim (\text{bending angle})^4$
- \exists bounds on spectral threshold, $\#$ of bound states
- **Perturbation theory** w.r.t. waveguide halfwidth a
Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- **Bending** means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- **Weak coupling:** energy $\sim (\text{bending angle})^4$
- \exists bounds on spectral threshold, $\#$ of bound states
- **Perturbation theory** w.r.t. waveguide halfwidth a
- Thin enough bent waveguides have resonances
Motivation: quantum waveguides

A lot is known about QM in strips or tubes modelling quantum wires. Recall some results:

- **Bending** means binding, i.e. nonzero curvature gives rise to effective attractive interaction
- The effect is robust, weak regularity requirements, even a slight bend can create bound states
- **Weak coupling**: energy $\sim (\text{bending angle})^4$
- \exists bounds on spectral threshold, $\#$ of bound states
- **Perturbation theory** w.r.t. waveguide halfwidth a
- Thin enough bent waveguides have resonances
- Thin enough periodically curved waveguides have open gaps, etc.
The surface Σ in \mathbb{R}^3 supposed to be C^2-smooth and to have at least one pole (i.e., exponential mapping $\exp_0: T_0 \Sigma \to \Sigma$ is a diffeomorphism). Hence σ is diffeomorphic to \mathbb{R}^2, i.e. simply connected and non-compact. Using geodesic polar coordinates we parametrize

$$p: \Sigma_0 \to \mathbb{R}^3 : \{q := (s, \theta) \mapsto p(q) \in \Sigma\}, \quad \Sigma_0 := (0, \infty) \times S^1$$
The surface Σ in \mathbb{R}^3 supposed to be C^2-smooth and to have at least one pole (i.e., exponential mapping $\exp_o : T_o \Sigma \to \Sigma$ is a diffeomorphism). Hence σ is diffeomorphic to \mathbb{R}^2, i.e. simply connected and non-compact. Using geodesic polar coordinates we parametrize

$$p : \Sigma_0 \to \mathbb{R}^3 : \{q := (s, \vartheta) \mapsto p(q) \in \Sigma\}, \quad \Sigma_0 := (0, \infty) \times S^1$$

The tangent vectors $p, \mu := \partial p/\partial q^\mu$ are linearly independent and their cross-product defines a unit normal field n on Σ.
Preliminaries

The surface Σ in \mathbb{R}^3 supposed to be C^2-smooth and to have at least one pole (i.e., exponential mapping $\exp_o : T_o \Sigma \to \Sigma$ is a diffeomorphism). Hence σ is diffeomorphic to \mathbb{R}^2, i.e. simply connected and non-compact. Using geodesic polar coordinates we parametrize

$$p : \Sigma_0 \to \mathbb{R}^3 : \{q := (s, \vartheta) \mapsto p(q) \in \Sigma\}, \quad \Sigma_0 := (0, \infty) \times S^1$$

The tangent vectors $p,\mu := \frac{\partial p}{\partial q^\mu}$ are linearly independent and their cross-product defines a unit normal field n on Σ.

The layer $\Omega := \mathcal{L}(\Omega_0)$ of width $d = 2a$ over Σ, where $\Omega_0 := \Sigma_0 \times (-a, a)$, is defined by the map

$$\mathcal{L} : \Omega_0 \to \mathbb{R}^3 : \{(q, u) \mapsto \mathcal{L}(q, u) := p(q) + u n(q) \in \Omega\}$$
Motivation: surfaces with poles

A more illustrative characterization of a pole of Σ: different geodetics emanating from it never cross.

The assumption is useful: we can easily measure distance, in particular, specify what we mean by “large distances”
Motivation: surfaces with poles

A more illustrative characterization of a pole of Σ: different geodetics emanating from it *never cross.*

The assumption is useful: we can easily measure distance, in particular, specify what we mean by “large distances”

The assumption is nontrivial. *Example* [Gromol-Meyer ’69]:

![Diagram](spherical_elliptical_legs.png)

However, the assumption is not necessary for the spectral result we are going to derive. Later we get rid of it.
The *surface metric* in the geodesic polar coordinates is diagonal, \((g_{\mu\nu}) = \text{diag} (1, r^2)\), where \(r^2 \equiv g := \det(g_{\mu\nu})\) is the squared Jacobian of the exponential mapping which satisfies *Jacobi equation*

\[
\ddot{r}(s, \vartheta) + K(s, \vartheta) r(s, \vartheta) = 0, \quad r(0, \vartheta) = 0, \quad \dot{r}(0, \vartheta) = 1
\]

Integrating it we get \(\int_0^\infty r(s, \theta) \, d\theta \leq C s\) for some \(C > 0\) provided the total curvature \(K\) defined below is finite.
Preliminaries: surface geometry

The surface metric in the geodesic polar coordinates is diagonal, \((g_{\mu\nu}) = \text{diag}(1, r^2) \), where \(r^2 \equiv g := \det(g_{\mu\nu}) \) is the squared Jacobian of the exponential mapping which satisfies Jacobi equation

\[
\ddot{r}(s, \vartheta) + K(s, \vartheta) \, r(s, \vartheta) = 0, \quad r(0, \vartheta) = 0, \quad \dot{r}(0, \vartheta) = 1
\]

Integrating it we get \(\int_0^\infty r(s, \theta) \, d\theta \leq Cs \) for some \(C > 0 \) provided the total curvature \(K \) defined below is finite.

In addition to \(g_{\mu\nu} := p_{,\mu} \cdot p_{,\nu} \) we introduce second fundamental form \(h_{\mu\nu} := -n_{,\mu} \cdot p_{,\nu} \) with \(h := \det(h_{\mu\nu}) \) and Weingärten map \(h^\mu_{\nu} := g^{\mu\rho} h_{\rho\nu} \) which determine

- **Gauss curvature** \(K := \det(h^\mu_{\nu}) = h/g \)
- **mean curvature** \(M := \frac{1}{2} \text{Tr}(h^\mu_{\nu}) = \frac{1}{2} g^{\mu\nu} h_{\mu\nu} \)
Preliminaries: total curvatures

Using *invariant surface element*, \(d\Sigma := g^{1/2} d^2 q \equiv g^{1/2} dq^1 dq^2 \), we introduce global quantities, in particular, *total curvatures*

\[
\mathcal{K} := \int_{\Sigma} K d\Sigma \quad \text{and} \quad \mathcal{M}^2 := \int_{\Sigma} M^2 d\Sigma ;
\]

we will suppose that the first one is finite, \(K \in L^1(\Sigma_0, d\Sigma) \).
Preliminaries: total curvatures

Using *invariant surface element*, \(d\Sigma := g^{1/2}d^2q \equiv g^{1/2}dq^1dq^2 \), we introduce global quantities, in particular, *total curvatures*

\[
K := \int_{\Sigma} K d\Sigma \quad \text{and} \quad M^2 := \int_{\Sigma} M^2 d\Sigma ;
\]

we will suppose that the first one is finite, \(K \in L^1(\Sigma_0, d\Sigma) \)

For a compact manifold \(G \) with a smooth boundary we have

\[
\mathcal{K}_G + \oint_{\partial G} k_g ds = 2\pi \quad \text{by Gauss-Bonnet theorem}
\]
Preliminaries: total curvatures

Using *invariant surface element*, \(d\Sigma := g^{1/2} d^2 q \equiv g^{1/2} dq_1 dq_2 \),
we introduce global quantities, in particular, *total curvatures*

\[
\mathcal{K} := \int_\Sigma K d\Sigma \quad \text{and} \quad \mathcal{M}^2 := \int_\Sigma M^2 d\Sigma ;
\]

we will suppose that the first one is finite, \(K \in L^1(\Sigma_0, d\Sigma) \).

For a compact manifold \(\mathcal{G} \) with a smooth boundary we have

\[
\mathcal{K}_\mathcal{G} + \oint_{\partial \mathcal{G}} k_g ds = 2\pi \quad \text{by *Gauss-Bonnet theorem*}
\]

In particular, if \(\Sigma \) is a *locally deformed plane* we choose \(\partial \mathcal{G} \)
outside the deformation, so \(\mathcal{K}_\mathcal{G} = \mathcal{K}_\Sigma = 0 \)
Preliminaries: layer geometry

Metric tensor, \(G_{ij} := \mathcal{L}_i \cdot \mathcal{L}_j \), of the layer (regarded as a manifold with boundary in \(\mathbb{R}^3 \)) has the block form

\[
(G_{ij}) = \begin{pmatrix}
(G_{\mu\nu}) & 0 \\
0 & 1
\end{pmatrix}
\]

with \(G_{\nu\mu} = (\delta^\sigma_\nu - uh^\sigma_\nu)(\delta^\rho_\tau - uh^\rho_\tau)g_{\rho\mu} \).
Preliminaries: layer geometry

Metric tensor, \(G_{ij} := \mathcal{L}_i \cdot \mathcal{L}_j \), of the layer (regarded as a manifold with boundary in \(\mathbb{R}^3 \)) has the block form

\[
(G_{ij}) = \begin{pmatrix} (G_{\mu\nu}) & 0 \\ 0 & 1 \end{pmatrix}
\]

with \(G_{\nu\mu} = (\delta_\nu^\sigma - uh_\nu^\sigma)(\delta_\sigma^\rho - uh_\sigma^\rho)g_{\rho\mu} \)

Recall that the ev’s of Weingärten map matrix are *principal curvatures* \(k_1, k_2 \), and that \(K = k_1 k_2, \ M = \frac{1}{2}(k_1 + k_2) \)
Preliminaries: layer geometry

Metric tensor, $G_{ij} := \mathcal{L}_i \cdot \mathcal{L}_j$, of the layer (regarded as a manifold with boundary in \mathbb{R}^3) has the block form

$$(G_{ij}) = \begin{pmatrix} (G_{\mu\nu}) & 0 \\ 0 & 1 \end{pmatrix} \quad \text{with} \quad G_{\nu\mu} = (\delta^\sigma_\nu - u h^\sigma_\nu)(\delta^\rho_\sigma - u h^\rho_\sigma) g_{\rho\mu}$$

Recall that the ev’s of Weingärten map matrix are *principal curvatures* k_1, k_2, and that $K = k_1 k_2$, $M = \frac{1}{2}(k_1 + k_2)$.

Then we can express the determinant, $G := \det(G_{ij})$ as

$$G = g [(1 - uk_1)(1 - uk_2)]^2 = g(1 - 2Mu + Ku^2)^2$$

In particular, the *volume element* is $d\Omega := G^{1/2} d^2q \, du$.
Preliminaries: assumptions

For the moment we adopt the following hypotheses:

\begin{align*}
\langle \Sigma_0 \rangle & \quad K \in L^1(\Sigma_0, d\Sigma) \\
\langle \Omega_0 \rangle & \quad \Omega \text{ is not self-intersecting, i.e. } L \text{ is injective} \\
\langle \Omega_1 \rangle & \quad a < \rho_m := (\max \{\|k_1\|_{\infty}, \|k_2\|_{\infty}\})^{-1}
\end{align*}
Preliminaries: assumptions

For the moment we adopt the following hypotheses:

\begin{align*}
\langle \Sigma 0 \rangle & \quad K \in L^1(\Sigma_0, d\Sigma) \\
\langle \Omega 0 \rangle & \quad \Omega \text{ is not self-intersecting, i.e. } \mathcal{L} \text{ is injective} \\
\langle \Omega 1 \rangle & \quad a < \rho_m := \left(\max \{ \|k_1\|_\infty, \|k_2\|_\infty \} \right)^{-1}
\end{align*}

The last one ensures that \(\mathcal{L} \) is a diffeomorphism, in particular, that \(\Omega \) has a smooth boundary. Furthermore, \(\langle \Omega 1 \rangle \) also implies a useful estimate,

\[C_- g_{\mu \nu} \leq G_{\mu \nu} \leq C_+ g_{\mu \nu} \quad \text{with} \quad 0 < C_- < 1 < C_+ < 4 \]

and the constants expressed in terms of the \textit{minimal normal curvature radius} \(\rho_m \) as \(C_\pm := \left(1 \pm a \rho_m^{-1} \right)^2 \).
Neglecting physical constants the Hamiltonian is identified with the Dirichlet Laplacian $-\Delta_D^\Omega$ on $L^2(\Omega)$ with the usual properties, e.g., the form domain is $W^{1,2}_0(\Omega)$.
Neglecting physical constants the Hamiltonian is identified with the Dirichlet Laplacian $-\Delta^\Omega_D$ on $L^2(\Omega)$ with the usual properties, e.g., the form domain is $W^{1,2}_0(\Omega)$.

In the coordinates (q, u) it acquires Laplace-Beltrami form

$$H := -G^{-1/2} \partial_i G^{1/2} G^{ij} \partial_j$$
on $L^2(\Omega_0, G^{1/2} d^2 q \, d u)$,

or $H = U(-\Delta^\Omega_D)U^{-1}$ with unitary $U : L^2(\Omega) \to L^2(\Omega_0, d\Omega)$.
Hamiltonian: curvilinear coordinates

Neglecting physical constants the Hamiltonian is identified with the Dirichlet Laplacian $-\Delta_D^\Omega$ on $L^2(\Omega)$ with the usual properties, e.g., the form domain is $W^{1,2}_0(\Omega)$.

In the coordinates (q,u) it acquires Laplace-Beltrami form

$$H := -G^{-1/2} \partial_i G^{1/2} G^{ij} \partial_j$$

on $L^2(\Omega_0, G^{1/2} d^2q du)$,

or $H = U(-\Delta_D^\Omega)U^{-1}$ with unitary $U : L^2(\Omega) \to L^2(\Omega_0, d\Omega)$.

If Σ is not C^3-smooth, H is understood in the form sense

$$Q(\psi) := \|H^{1/2}\psi\|_G^2 = (\psi, i, G^{ij} \psi, j)_G, \quad D(Q) = W^{1,2}_0(\Omega_0, d\Omega),$$

where "G" indicates the norm and the inner product in the above Hilbert space.
Hamiltonian: decomposition

The block form of G_{ij} yields $H = H_1 + H_2$ with

$$H_1 := -G^{-1/2} \partial_{\mu} G^{1/2} G^{\mu\nu} \partial_{\nu} = -\partial_{\mu} G^{\mu\nu} \partial_{\nu} - 2 F_{,\mu} G^{\mu\nu} \partial_{\nu},$$

$$H_2 := -G^{-1/2} \partial_{3} G^{1/2} \partial_{3} = -\partial_{3}^2 - 2 \frac{K u - M}{1 - 2 M u + K u^2} \partial_{3},$$

where $F := \ln G^{1/4}$ and $F_{,3}$ is given explicitly in H_2.

Wrocław University, Institute of Theoretical Physics, April 16, 2004 – p.13/50
Hamiltonian: decomposition

The block form of G_{ij} yields $H = H_1 + H_2$ with

$$H_1 := -G^{-1/2} \partial_\mu G^{1/2} G^{\mu\nu} \partial_\nu = -\partial_\mu G^{\mu\nu} \partial_\nu - 2 F,_{\mu} G^{\mu\nu} \partial_\nu,$$

$$H_2 := -G^{-1/2} \partial_3 G^{1/2} \partial_3 = -\partial_3^2 - 2 \frac{Ku - M}{1 - 2Mu + Ku^2} \partial_3,$$

where $F := \ln G^{1/4}$ and $F,_{3}$ is given explicitly in H_2

An alternative form, with the factor $1 - 2Mu + Ku^2$ removed from the weight $G^{1/2}$, is obtained by another unitary transformation $\hat{U} : L^2(\Omega_0, d\Omega) \rightarrow L^2(\Omega_0, d\Sigma du)$,

$$\psi \mapsto \hat{U}\psi := (1 - 2Mu + Ku^2)^{1/2}\psi,$$

giving $\hat{H} := \hat{U} H \hat{U}^{-1}$. The norm in the corresponding Hilbert space is indicated by the subscript “g”
Hamiltonian: decomposition

The operator \hat{H} contains an effective potential; introducing $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$ we rewrite it as follows,

$$\hat{H} = -g^{-1/2} \partial_i g^{1/2} G^{ij} \partial_j + V, \quad V = g^{-1/2} (g^{1/2} G^{ij} J_{,j})_{,i} + J_{,i} G^{ij} J_{,j}$$
The operator \hat{H} contains an effective potential; introducing $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$ we rewrite it as follows,

$$\hat{H} = -g^{-1/2} \partial_i g^{1/2} G^{ij} \partial_j + V, \quad V = g^{-1/2} (g^{1/2} G^{ij} J_{,j})_{,i} + J_{,i} G^{ij} J_{,j}$$

This yields $\hat{H} = \hat{H}_1 + \hat{H}_2$, where \hat{H}_1 has the above form with summation over Greek indices and

$$\hat{H}_2 = -\partial_3^2 + V_2, \quad V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2}$$
Hamiltonian: decomposition

The operator \hat{H} contains an effective potential; introducing $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$ we rewrite it as follows,

$$\hat{H} = -g^{-1/2} \partial_i g^{1/2} G^{ij} \partial_j + V, \quad V = g^{-1/2}(g^{1/2}G^{ij} J_{,j})_{,i} + J_{,i}G^{ij} J_{,j}$$

This yields $\hat{H} = \hat{H}_1 + \hat{H}_2$, where \hat{H}_1 has the above form with summation over Greek indices and

$$\hat{H}_2 = -\partial_3^2 + V_2, \quad V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2}$$

In analogy with the curved tube case it is illustrative to write $\hat{H} = \hat{H}_q - \partial_3^2$, where $\hat{H}_q := \hat{H}_1 + V_2$
Heuristic considerations

In thin layers, $a \ll \rho_m$, the longitudinal and transverse variables are \textit{asymptotically decoupled}, because

$$H_q := -g^{-1/2} \partial_\mu g^{1/2} g^{\mu \nu} \partial_\nu + K - M^2 + \mathcal{O}(a\rho_m^{-1}) ;$$

notice that in distinction from the tube case the surface cannot be fully “ironed”, the surface geometry persists
Heuristic considerations

In thin layers, $a \ll \rho_m$, the longitudinal and transverse variables are asymptotically decoupled, because

$$H_q := -g^{-1/2} \partial_\mu g^{1/2} g^{\mu\nu} \partial_\nu + K - M^2 + O(a\rho_m^{-1}) ;$$

notice that in distinction from the tube case the surface cannot be fully “ironed”, the surface geometry persists.

The additional potential $K - M^2$ rewrites in terms of principal curvatures as $-\frac{1}{4}(k_1 - k_2)^2$. It is attractive unless

- Σ is planar, $k_1 = k_2 = 0$
- Σ is spherical, $k_1 = k_2$, however, a noncompact Σ clearly cannot be spherical globally
Examples of the effective interaction

Effective Potential \[V_{\text{eff}} = -\frac{1}{4} (k_+ - k_-)^2 \]

Paraboloid of Revolution \[z = x^2 + y^2 \]

Hyperbolic Paraboloid \[z = x^2 - y^2 \]

Monkey Saddle \[z = x^3 - 3xy^2 \]

The minima of \(V_{\text{eff}} \) are marked by the dark red colour.
Essential spectrum threshold

Notation: we use eigenfunctions \(\{ \chi_n \}_{n=1}^{\infty} \) of the transverse operator \((-\partial^2_D)_D\) given by \(\sqrt{\frac{2}{d}} \left(\cos \frac{\kappa_n}{\sin u} \right) \) for \(n \) odd, where \(\kappa_n^2 := (\kappa_1 n)^2 \) with \(\kappa_1 := \pi/d \) are the corresponding ev’s
Essential spectrum threshold

Notation: we use eigenfunctions \(\{ \chi_n \}_{n=1}^{\infty} \) of the transverse operator \((-\partial_3^2)_D\) given by \(\sqrt{\frac{2}{d}} \left(\cos \frac{\kappa_n u}{\sin \frac{\kappa_n u}{d}} \right) \) for \(n \) (odd), where \(\kappa_n^2 := (\kappa_1 n)^2 \) with \(\kappa_1 := \pi/d \) are the corresponding ev’s.

One more assumption: \(\Sigma \) is *asymptotically planar*, i.e.

\[
\langle \Sigma 0 \rangle \quad K, M \to 0 \quad \text{holds as} \quad s \to \infty
\]
Essential spectrum threshold

Notation: we use eigenfunctions \(\{\chi_n\}_{n=1}^{\infty} \) of the transverse operator \((-\partial_3^2)_D\) given by \(\sqrt{\frac{2}{d}} \left(\cos\frac{\kappa_n u}{\kappa_1} \right) \) for \(n (\text{odd}) \), where \(\kappa_n^2 := (\kappa_1 n)^2 \) with \(\kappa_1 := \pi/d \) are the corresponding ev’s.

One more assumption: \(\Sigma \) is asymptotically planar, i.e.

\[\langle \Sigma 0 \rangle \]

\(K, M \to 0 \) holds as \(s \to \infty \)

Theorem [Duclos-E.-Krejčiřík, 2001]: Assume \(\langle \Omega 0 \rangle, \langle \Omega 1 \rangle \) and \(\langle \Sigma 0 \rangle \), then we have

\[\inf \sigma_{ess}(-\Delta_{\Omega D}) \geq \kappa_1^2 \]
Divide Ω into an exterior and interior by extra *Neumann b.c.* at $s = s_0$, then $H \geq H_N^{\text{int}} \oplus H_N^{\text{ext}}$. The interior does not contribute to σ_{ess}, so by minimax principle we infer

$$\inf \sigma_{\text{ess}}(H) \geq \inf \sigma_{\text{ess}}(H_N^{\text{ext}}) \geq \inf \sigma(H_N^{\text{ext}})$$

In the exterior we have for all $\psi \in D(Q_N^{\text{ext}})$ the estimate

$$Q_N^{\text{ext}}(\psi) \geq \|\psi,3\|_{G,\text{ext}}^2 \geq \inf_{\Omega_{\text{ext}}} \{1 - 2Mu + Ku^2\} \|\psi,3\|_{g,\text{ext}}^2$$

$$\geq \left(1 - \sup_{\Sigma_{\text{ext}}}\{2a|M| + a^2|K|\}\right) \kappa_1^2 \|\psi\|_{g,\text{ext}}^2$$

$$\geq \frac{1 - \sup_{\Sigma_{\text{ext}}}\{2a|M| + a^2|K|\}}{1 - \inf_{\Sigma_{\text{ext}}}\{2a|M| + a^2|K|\}} \kappa_1^2 \|\psi\|_{G,\text{ext}}^2$$

$$= (1 + o(s_0)) \kappa_1^2 \|\psi\|_{G,\text{ext}}^2 \quad \Box$$
Curvature-induced binding, $\mathcal{K} \leq 0$

Theorem [Duclos-E.-Krejčičík, 2001]: Assume $\langle \Omega_0 \rangle$, $\langle \Omega_1 \rangle$ and $\langle \Sigma_1 \rangle$, and suppose that Σ is not planar. If $\mathcal{K} \leq 0$, then

$$\inf \sigma(-\Delta_{D}) < \kappa_1^2$$

In particular, $\sigma_{\text{disc}}(-\Delta_{D}) \neq \emptyset$ if $\langle \Sigma_0 \rangle$ holds.
Curvature-induced binding, $\mathcal{K} \leq 0$

Theorem [Duclos-E.-Krejčiřík, 2001]: Assume $\langle \Omega_0 \rangle$, $\langle \Omega_1 \rangle$ and $\langle \Sigma_1 \rangle$, and suppose that Σ is not planar. If $\mathcal{K} \leq 0$, then

$$\inf \sigma(-\Delta_{\mathcal{D}}^\mathcal{O}) < \kappa_1^2$$

In particular, $\sigma_{\text{disc}}(-\Delta_{\mathcal{D}}^\mathcal{O}) \neq \emptyset$ if $\langle \Sigma_0 \rangle$ holds.

Sketch of the proof: By a variational argument, seeking a trial function Ψ from $\mathcal{Q}(H)$ such that

$$\tilde{\mathcal{Q}}(\Psi) := \mathcal{Q}(\Psi) - \kappa_1^2 \|\Psi\|_G^2 < 0$$

It is convenient to split the Hamiltonian form, $\mathcal{Q} = \mathcal{Q}_1 + \mathcal{Q}_2$ with parts associated to H_1 and H_2 introduced above. We employ *Goldstone-Jaffe trick*, choosing radially symmetric $\psi(s, \vartheta, u) := \varphi(s) \chi_1(u)$ with φ to be specified.
$\mathcal{K} \leq 0$, sketch of the proof

Using the factorized form of ψ we get directly

$$Q_2(\psi) - \kappa_1^2 \|\psi\|_G^2 = (\psi, K\psi)_g$$

On the other hand, the “longitudinal kinetic part” $Q_1(\psi)$ can be estimated by the radial gradient norm of ψ as

$$Q_1(\psi) \leq C_1 \int_0^{\infty} |\varphi(s)|^2 s \, ds$$

with some $C_1 > 0$. To make it small we need a suitable family of radial functions such that $\psi \in \mathcal{Q}(H)$; we choose them as scaled Macdonald functions outside a circle, i.e.

$$\varphi_\sigma(s) := \min \left\{ 1, \frac{K_0(\sigma s)}{K_0(\sigma s_0)} \right\}$$
\(\mathcal{K} \leq 0 \), sketch of the proof

It is straightforward to compute the integral; we get

\[
\exists C_2 > 0 : \quad \int_0^\infty |\dot{\phi}_\sigma(s)|^2 s \, ds < \frac{C_2}{|\ln \sigma s_0|},
\]

and therefore \(Q_1(\psi_\sigma) \to 0^+ \) as \(\sigma \to 0^+ \). We assume \(\langle \Sigma 1 \rangle \), so by dominated the first part of the shifted energy form tends to \(\mathcal{K} \) as \(\sigma \to 0^+ \); this proves the theorem if \(\mathcal{K} < 0 \).
\[\mathcal{K} \leq 0, \text{ sketch of the proof} \]

It is straightforward to compute the integral; we get

\[\exists C_2 > 0 : \quad \int_0^\infty |\dot{\phi}_\sigma(s)|^2 s \, ds < \frac{C_2}{|\ln \sigma s_0|}, \]

and therefore \(Q_1(\psi_\sigma) \to 0^+ \) as \(\sigma \to 0^+ \). We assume \(\langle \Sigma 1 \rangle \), so by dominated the first part of the shifted energy form tends to \(\mathcal{K} \) as \(\sigma \to 0^+ \); this proves the theorem if \(\mathcal{K} < 0 \).

If \(\mathcal{K} = 0 \) we follow GJ idea choosing \(\Psi_{\sigma,\epsilon} := \psi_\sigma + \epsilon \Theta \), where \(\Theta(q, u) := j(q)^2 u \chi_1(u) \) with \(j \in C_0^\infty((0, s_0) \times S^1) \); it gives

\[\tilde{Q}(\Psi_{\sigma,\epsilon}) = \tilde{Q}(\psi_\sigma) + 2\epsilon \tilde{Q}(\Theta, \psi_\sigma) + \epsilon^2 \tilde{Q}(\Theta) \]

Since \(\tilde{Q}(\Theta, \psi_\sigma) = -\frac{1}{d} (j, M)_g \neq 0 \) in general, the sum of the last two terms can be made negative; then \(\tilde{Q}(\Psi_{\sigma,\epsilon}) < 0 \) will hold for \(\sigma \) small enough. \(\square \)
\(\mathcal{K} \leq 0 \), examples

The theorem applies to layers built over Cartan-Hadamard surfaces, i.e. geodesically complete simply connected non-compact ones with \(\mathcal{K} \leq 0 \) (then each point is a pole)

Locally curved plane has \(\mathcal{K} = 0 \) by Gauss-Bonnet, the same is true for surfaces with curvatures which are not compactly supported but decay fast enough
\(\mathcal{K} \leq 0 \), examples

The theorem applies to layers built over *Cartan-Hadamard surfaces*, i.e. geodesically complete simply connected non-compact ones with \(\mathcal{K} \leq 0 \) (then each point is a pole)

- **Locally curved plane** has \(\mathcal{K} = 0 \) by Gauss-Bonnet, the same is true for surfaces with curvatures which are not compactly supported but decay fast enough

- **Hyperbolic paraboloid**: the simple quadric given in \(\mathbb{R}^3 \) by the equation \(z = x^2 - y^2 \) is an asymptotically planar surface with \(\mathcal{K} = -2\pi \)
$\mathcal{K} \leq 0$, examples

The theorem applies to layers built over *Cartan-Hadamard surfaces*, i.e. geodesically complete simply connected non-compact ones with $\mathcal{K} \leq 0$ (then each point is a pole)

- **Locally curved plane** has $\mathcal{K} = 0$ by Gauss-Bonnet, the same is true for surfaces with curvatures which are not compactly supported but decay fast enough

- **Hyperbolic paraboloid**: the simple quadric given in \mathbb{R}^3 by the equation $z = x^2 - y^2$ is an asymptotically planar surface with $\mathcal{K} = -2\pi$

- **Monkey saddle**: another example of a saddle surface is $z = x^3 - 3xy^2$; it satisfies again $\langle \Sigma 1 \rangle$ and $\mathcal{K} = -4\pi$
Other sufficient conditions

The GJ trick – constructing a trial function starting from a factorized function $\psi(s, v, u) := \varphi(s) \chi_1(u)$ – does not work for $\mathcal{K} > 0$. However, other sufficient conditions can still be obtained variationally:
Other sufficient conditions

The GJ trick – constructing a trial function starting from a factorized function $\psi(s, \vartheta, u) := \varphi(s) \chi_1(u)$ – does not work for $K > 0$. However, other sufficient conditions can still be obtained variationally:

Theorem [Duclos-E.-Krejčiřík, 2001]: Assume $\langle \Omega_0 \rangle$ and $\langle \Omega_1 \rangle$ and suppose that Σ is C^3-smooth and non-planar. In addition, let one of the following conditions be valid:

- the layer Ω is *thin enough*
- we have $\langle \Sigma 1 \rangle$, $M = \infty$, and
 $$\langle \Sigma 2 \rangle$$ the covariant derivative $\nabla_g M \in L^2(\Sigma_0, d\Sigma)$

Then $\inf \sigma(-\Delta^{\Omega_D}) < \kappa_1^2$, in particular, curvature-induced bound states exist under the assumption $\langle \Sigma 0 \rangle$
Sketch of the proof

Trial function \(\Psi_\sigma(s, \vartheta, u) := (1 + M(s, \vartheta)u) \psi_\sigma(s, u) \) gives

\[
Q_1(\Psi_\sigma) \leq 2(C_+/C_-)^2 \left((1 + a\|M\|_\infty)^2 \|\dot{\psi}_\sigma\|_g^2 + a^2\|\psi_\sigma \nabla_g M\|_g^2 \right)
\]
small as \(\sigma \to 0 \)

\[
O(a^2)
\]

\[
Q_2(\Psi_\sigma) - \kappa_1^2\|\psi\|_G^2 = (\psi_\sigma, (K - M^2)\psi_\sigma)_g + \frac{\pi^2 - 6}{12\kappa_1^2} (\psi_\sigma, KM^2\psi_\sigma)_g
\]

< 0

\[
O(a^2)
\]
Sketch of the proof

Trial function $\Psi_\sigma(s, \vartheta, u) := (1 + M(s, \vartheta)u) \psi_\sigma(s, u)$ gives

$$Q_1(\Psi_\sigma) \leq 2(C_+/C_-)^2 \left((1 + a\|M\|_\infty)^2 \|\psi_\sigma\|^2_g + a^2\|\psi_\sigma \nabla_g M\|^2_g \right)$$

small as $\sigma \to 0 \quad \mathcal{O}(a^2)$

$$Q_2(\Psi_\sigma) - \kappa_1^2\|\psi\|^2_G = (\psi_\sigma, (K - M^2)\psi_\sigma)_g + \frac{\pi^2 - 6}{12\kappa_1^2} (\psi_\sigma, KM^2\psi_\sigma)_g$$

< 0 \quad \mathcal{O}(a^2)$

If a is small enough, choosing small σ we can achieve that the sum dominated by $(\psi_\sigma, (K - M^2)\psi_\sigma)_g < 0$
Sketch of the proof

Trial function $\Psi_\sigma(s, \vartheta, u) := (1 + M(s, \vartheta)u) \psi_\sigma(s, u)$ gives

\[
Q_1(\Psi_\sigma) \leq 2(C_+/C_-)^2 \left((1 + a\|M\|_\infty)^2 \|\dot{\psi}_\sigma\|_g^2 + a^2\|\psi_\sigma \nabla_g M\|_g^2 \right)
\]

small as $\sigma \to 0 \quad \mathcal{O}(a^2)$

\[
Q_2(\Psi_\sigma) - \kappa_1^2\|\psi\|_G^2 = (\psi_\sigma, (K - M^2)\psi_\sigma)_g + \frac{\pi^2 - 6}{12\kappa_1^2} (\psi_\sigma, KM^2\psi_\sigma)_g
\]

\[
< 0 \quad \mathcal{O}(a^2)
\]

If a is small enough, choosing small σ we can achieve that the sum dominated by $(\psi_\sigma, (K - M^2)\psi_\sigma)_g < 0$

Under the second assumption, $(\psi_\sigma, -M^2\psi_\sigma)_g \to -\infty$ as $\sigma \to 0^+$, while the other terms remain finite. \square
Cylindrically symmetric layers

Another sufficient condition can be derived for layers invariant w.r.t. rotations around a fixed axis in \mathbb{R}^3 with Σ parameterized by means of $r, z \in C^2 ((0, \infty))$ as

$$p : \Sigma_0 \to \mathbb{R}^3 : \{(s, \vartheta) \mapsto (r(s) \cos \vartheta, r(s) \sin \vartheta, z(s))\}$$

It is a geodesic polar coordinate chart if we require

$$\dot{r}^2 + \dot{z}^2 = 1 \; ; \; \text{then also} \; \dot{r}\ddot{r} + \dot{z}\ddot{z} = 0$$

The Weingärten tensor is $(h^\nu_\mu) = \text{diag} (k_s, k_\vartheta)$ with the principal curvatures $k_s = \dot{r}\ddot{z} - \dddot{r}z$ and $k_\vartheta = \dddot{z} r$. We have

$$\mathcal{K} + 2\pi \dot{r}(\infty) = 2\pi \; , \; \text{where} \; \dot{r}(\infty) := \lim_{s \to \infty} \dot{r}(s)$$

by Gauss-Bonnet theorem, and since $0 \leq \dot{r}(\infty) \leq 1$, such a cylindrically invariant surface Σ always has $0 \leq \mathcal{K} \leq 2\pi$
Cylindrically symmetric layers

We exclude the case already resolved and assume $K > 0$, i.e. $0 \leq \dot{r}(\infty) < 1$. Using the above parametrization we get

Lemma: Let $K > 0$, then there are $\delta > 0$ and $s_0 > 0$ s.t.

$$\forall s \geq s_0 : \quad \frac{\delta}{r(s)} \leq |k_\vartheta(s)| \leq \frac{1}{r(s)}$$

and $k_\vartheta(s)$ does not change sign. It follows that k_ϑ is not integrable in $L^1(\mathbb{R}_+)$. If $\langle \Sigma 1 \rangle$ is satisfied, we have $M = \infty$
Cylindrically symmetric layers

We exclude the case already resolved and assume $\mathcal{K} > 0$, i.e. $0 \leq \hat{r}(\infty) < 1$. Using the above parametrization we get

Lemma: Let $\mathcal{K} > 0$, then there are $\delta > 0$ and $s_0 > 0$ s.t.

$$\forall s \geq s_0 : \frac{\delta}{r(s)} \leq |k_\vartheta(s)| \leq \frac{1}{r(s)}$$

and $k_\vartheta(s)$ does not change sign. It follows that k_ϑ is not integrable in $L^1(\mathbb{R}^+)$. If $\langle \Sigma 1 \rangle$ is satisfied, we have $M = \infty$

Theorem [Duclos-E.-Krejčiřík, 2001]: Assume $\langle \Omega 0 \rangle$, $\langle \Omega 1 \rangle$ and $\langle \Sigma 1 \rangle$, and suppose that Σ is a surface of revolution with $\mathcal{K} > 0$. Then $\inf \sigma(-\Delta^D_\Omega) < \kappa_1^2$, in particular, $\sigma_{\text{disc}}(d - \Delta^D_\Omega) \neq \emptyset$ holds under the assumption $\langle \Sigma 0 \rangle$
Sketch of the proof

By assumption M dominates over K in effective potential at large distances, hence we choose trial functions supported there. Consider sequences $\{n^i\}_{n=1}^\infty$, $i = 1, 2, 3$, and put

$$\varphi_n(s) := \frac{\ln(sn^{-i})}{\ln(n^{-i})}, \quad \phi_n(s) := \frac{\varphi_n(s)}{s}, \quad (i, j) \in \{(1, 2), (3, 2)\}$$

if $\min\{n^i, n^j\} < s \leq \max\{n^i, n^j\}$ and zero otherwise. We employ functions $\Psi_{n,\varepsilon}(s, u) := (\varphi_n(s) + \varepsilon\phi_n(s)u)\chi_1(u)$ which belong to form domain of H and are uniformly bounded.
Sketch of the proof

By assumption M dominates over K in effective potential at large distances, hence we choose trial functions supported there. Consider sequences $\{n^i\}_{n=1}^{\infty}$, $i = 1, 2, 3$, and put

$$\varphi_n(s) := \frac{\ln(sn^{-i})}{\ln(n^{j-i})}, \quad \phi_n(s) := \frac{\varphi_n(s)}{s}, \quad (i, j) \in \{(1, 2), (3, 2)\}$$

if $\min\{n^i, n^j\} < s \leq \max\{n^i, n^j\}$ and zero otherwise. We employ functions $\Psi_{n, \varepsilon}(s, u) := (\varphi_n(s) + \varepsilon\phi_n(s)u)\chi_1(u)$ which belong to form domain of H and are uniformly bounded.

By a direct computation and simple estimates we get

$$\lim_{n \to \infty} \tilde{Q}[\Psi_{n, \varepsilon}] = \lim_{n \to \infty} \left[\varepsilon^2 \|\phi_n\|_\Sigma^2 - 2\varepsilon(\varphi_n, M\phi_n)_\Sigma\right]$$

if the r.h.s. limit exists, where the norms refer to $L^2(\Sigma, d\Sigma_0)$.
Sketch of the proof

We choose \(\varepsilon \equiv \varepsilon_n := (\varphi_n, M\phi_n)^{-1} \) which makes sense as the integral diverges; thus one has to compare \(-2\) with

\[
\lim_{n \to \infty} \frac{(\phi_n, \phi_n)^{\Sigma}}{(\varphi_n, M\phi_n)^{2\Sigma}}
\]
Sketch of the proof

We choose \(\varepsilon \equiv \varepsilon_n := (\varphi_n, M\phi_n)_\Sigma^{-1} \) which makes sense as the integral diverges; thus one has to compare \(-2\) with

\[
\lim_{n \to \infty} \frac{(\phi_n, \phi_n)_\Sigma}{(\varphi_n, M\phi_n)_\Sigma^2}
\]

Now finally we use rotational symmetry. Since \(k_s \in L^1(\mathbb{R}_+) \) and \(\phi_n \) is chosen to eliminate the weight \(r \), the meridian curvature does not contribute in the denominator, while in view of the lemma \(k_{\psi r} \) behaves as one at infinity. Consequently, the limit in question is

\[
\int_0^\infty \frac{\phi_n(s)^2 s ds}{(\int_0^\infty \varphi_n(s)\phi_n(s) ds)^2} = \frac{1}{\int_0^\infty \phi_n(s)^2 s ds} = \frac{3}{\ln(n^2)} \to 0,
\]

and thus \(\lim_{n \to \infty} \tilde{Q}(\Psi_n, \varepsilon) \to -2 \) as we sought to prove \(\square \)
Remarks

\textit{Partial wave decomposition:} one can decompose $-\Delta^\Omega_D$ to angular momentum subspaces and employ 2D methods. It is not much simpler, but one gets an insight: the trial function could be supported in the far off region where the \textit{centrifugal term is weak}.
Remarks

- **Partial wave decomposition**: one can decompose $-\Delta_{\mathcal{D}}^\Omega$ to angular momentum subspaces and employ 2D methods. It is not much simpler, but one gets an insight: the trial function could be supported in the far off region where the *centrifugal term is weak*.

- **Layers without bound states**: if you “close” Σ too much the discrete spectrum may be lost. *Example*: let Σ be a cylinder with a hemispherical “cap”, then by Neumann bracketing we check that $\sigma_{\text{disc}}(-\Delta_{\mathcal{D}}^\Omega) = \emptyset$. While it does not satisfy our smoothness assumptions, a counterexample is obtained using domain continuity. The reason is, of course, that such a Σ *ceases to be asymptotically planar* pushing $\inf \sigma_{\text{ess}}(-\Delta_{\mathcal{D}}^\Omega)$ down.
Generalizations

Let Ω be built over Σ which is complete non-compact connected C^2-smooth surface, and suppose that $\langle \Omega 0 \rangle$, $\langle \Omega 1 \rangle$ and $\langle \Sigma 1 \rangle$ are satisfied.

- Under $\langle \Sigma 0 \rangle$ we have $\inf \sigma_{\text{ess}} \left(-\Delta_D^{\Omega} \right) = \kappa_1^2$
Generalizations

Let Ω be built over Σ which is complete non-compact connected C^2-smooth surface, and suppose that $\langle \Omega 0 \rangle$, $\langle \Omega 1 \rangle$ and $\langle \Sigma 1 \rangle$ are satisfied.

- Under $\langle \Sigma 0 \rangle$ we have $\inf \sigma_{\text{ess}} \left(-\Delta^\Omega_D \right) = \kappa_1^2$

- *Pole existence is not required*. Also the smoothness requirements can be relaxed: C^3 is nowhere needed.
Generalizations

Let Ω be built over Σ which is complete non-compact connected C^2-smooth surface, and suppose that $\langle \Omega 0 \rangle$, $\langle \Omega 1 \rangle$ and $\langle \Sigma 1 \rangle$ are satisfied.

- Under $\langle \Sigma 0 \rangle$ we have $\inf \sigma_{\text{ess}} (-\Delta^\Omega_D) = \kappa_1^2$

- Pole existence is not required. Also the smoothness requirements can be relaxed: C^3 is nowhere needed.

- More important, we have new sufficient conditions: $\inf \sigma (-\Delta^\Omega_D) < \kappa_1^2$ holds if Σ contains a cylindrically symmetric end with a positive total Gauss curvature, and
Generalizations

Let \(\Omega \) be built over \(\Sigma \) which is complete non-compact connected \(C^2 \)-smooth surface, and suppose that \(\langle \Omega 0 \rangle \), \(\langle \Omega 1 \rangle \) and \(\langle \Sigma 1 \rangle \) are satisfied.

- Under \(\langle \Sigma 0 \rangle \) we have \(\inf \sigma_{\text{ess}} (-\Delta_{\Omega_D}) = \kappa_1^2 \)

- **Pole existence is not required.** Also the smoothness requirements can be relaxed: \(C^3 \) is nowhere needed.

- More important, we have **new sufficient conditions:** \(\inf \sigma (-\Delta_{\Omega_D}) < \kappa_1^2 \) holds if \(\Sigma \) contains a **cylindrically symmetric end** with a **positive total Gauss curvature**, and

- the same is true if the generating surface \(\Sigma \) **is not conformally equivalent to the plane**
inf \sigma_{\text{ess}} \left(-\Delta_{\Omega}^{D} \right) \text{ revisited}

The lower bound by \kappa_{1}^{2} can be proved under the more general assumptions; the argument based on Neumann bracketing generalizes easily.
inf \sigma_{ess} \left(-\Delta_D \right) \text{ revisited}

The lower bound by κ_1^2 can be proved under the more general assumptions; the argument based on Neumann bracketing generalizes easily.

The upper bound: If $K \to 0$ at infinity, to any $\varepsilon > 0$ there is an infinite-dimensional $D_g \subset C_0^\infty(\Sigma)$ s.t. $\|\nabla g \varphi\|_g \leq \varepsilon \|\varphi\|_g$ holds for $\varphi \in D_g$. Then we employ the identity

$$\|\nabla \varphi \chi_1\|^2 = \|\nabla \varphi \chi_1\|^2 - (\varphi \chi_1, \varphi \Delta \chi_1)$$

The first term is estimated by $(C_+/C_-^2) \varepsilon^2 \|\varphi \chi_1\|^2$, while the one can be rewritten as

$$-(\varphi \Delta \chi_1, \varphi \chi_1) = \kappa_1^2 \|\varphi \chi_1\|^2 + (\varphi \chi_1', 2M_u \varphi \chi_1),$$

where $M_u := \frac{M-Ku}{1-2Mu+Ku^2}$ refers to “parallel” surface $L(\Sigma \times \{u\})$.

Wroclaw University, Institute of Theoretical Physics, April 16, 2004 – p.31/50
Inf \sigma_{\text{ess}} \left(-\Delta_D^\Theta \right) \text{ revisited}

Integrating the last term by parts in \(u \) we conclude that for any \(\varepsilon > 0 \) there is \(\mathcal{D} := \mathcal{D}_g \otimes \{\chi_1\} \subset C^\infty_0(\Omega) \) such that

\[
\forall \psi \in \mathcal{D} : \quad \| \nabla \psi \|^2 - (\psi, K_u \psi) \leq (\kappa_1^2 + (C_+/C_-^2) \varepsilon^2) \| \psi \|^2,
\]

where \(K_u := \frac{K}{1-2Mu+Ku^2} \) is the Gauss curvature of the above indicated parallel surface
\[\inf \sigma_{\text{ess}} \left(-\Delta_D^\Omega \right) \text{ revisited} \]

Integrating the last term by parts in \(u \) we conclude that for any \(\varepsilon > 0 \) there is \(D := D_g \otimes \{ \chi_1 \} \subset C_0^\infty(\Omega) \) such that

\[
\forall \psi \in D : \quad \| \nabla \psi \|^2 - (\psi, K_u \psi) \leq \left(\kappa_1^2 + (C_+/C_-^2) \varepsilon^2 \right) \| \psi \|^2,
\]

where \(K_u := \frac{K}{1-2Mu+Ku^2} \) is the Gauss curvature of the above indicated parallel surface.

This proves \(\inf \sigma_{\text{ess}}(-\Delta_D^\Omega - K_u) \leq \kappa_1^2 \). Since \(K_u \) vanishes at infinity by assumption, the operator \(K_u(-\Delta_D^\Omega + 1)^{-1} \) is compact in \(L^2(\Omega) \) and the same spectral result holds thus for the operator \(-\Delta_D^\Omega \) we are interested in. \(\square \)
Integrating the last term by parts in u we conclude that for any $\varepsilon > 0$ there is $D := D_g \otimes \{\chi_1\} \subset C^\infty_0(\Omega)$ such that

$$\forall \psi \in D : \|\nabla \psi\|^2 - (\psi, K_u \psi) \leq (\kappa_1^2 + (C_+/C_-^2) \varepsilon^2) \|\psi\|^2,$$

where $K_u := \frac{K}{1 - 2M u + K u^2}$ is the Gauss curvature of the above indicated parallel surface.

This proves $\inf \sigma_{\text{ess}}(-\Delta_D - K_u) \leq \kappa_1^2$. Since K_u vanishes at infinity by assumption, the operator $K_u(-\Delta_D + 1)^{-1}$ is compact in $L^2(\Omega)$ and the same spectral result holds thus for the operator $-\Delta_D$ we are interested in \square

Remark: Notice that only $K \to 0$ at infinity is needed in order to establish the upper bound.
Surfaces without poles

We needed geodetical polar coordinates to construct mollifiers in our trial functions. This can be circumvented:

Lemma [Carron-E.-Krejčiřík, 2004]: Assume $\langle \Sigma 1 \rangle$, then there is a sequence $\{\varphi_n\}_{n \in \mathbb{N}}$ of smooth functions with compact supports in Σ such that

- $\forall n \in \mathbb{N} : 0 \leq \varphi_n \leq 1$
- $\| \nabla_g \varphi_n \|_g \to 0$ as $n \to \infty$
- $\varphi_n \to 1$ as $n \to \infty$ uniformly on compacts of Σ
Surfaces without poles

We needed geodetical polar coordinates to construct mollifiers in our trial functions. This can be circumvented:

Lemma [Carron-E.-Krejčiřík, 2004]: Assume $\langle \Sigma 1 \rangle$, then there is a sequence $\{\varphi_n\}_{n \in \mathbb{N}}$ of smooth functions with compact supports in Σ such that

- $\forall n \in \mathbb{N}: 0 \leq \varphi_n \leq 1$
- $\|\nabla_g \varphi_n\|_g \rightarrow 0$ as $n \rightarrow \infty$
- $\varphi_n \rightarrow 1$ as $n \rightarrow \infty$ uniformly on compacts of Σ

Proof: Under $\langle \Sigma 1 \rangle$ a classical result of [Huber ’57] states that (Σ, g) is conformally equivalent to a closed surface with a finite number of points removed. However, the integral $\|\nabla_g \varphi_n\|_g$ is a conformal invariant and it is easy to find a sequence having the required properties on the “pierced” closed surface. □
Theorem [Carron-E.-Krejčiřík, 2004]: Under the stated assumptions, one has $\inf \sigma(-\Delta^\Omega_D) < \kappa_1^2$ whenever Σ is not conformally equivalent to the plane.
Theorem [Carron-E.-Krejčiřík, 2004]: Under the stated assumptions, one has $\inf \sigma(-\Delta^\Omega_D) < \kappa_1^2$ whenever Σ is not conformally equivalent to the plane.

Proof: Indeed, the Cohn-Vossen inequality yields

$$\mathcal{K} \leq 2\pi (2 - 2h - e),$$

where h is the genus of Σ and e is the number of ends. Hence $\mathcal{K} < 0$ whenever $h \geq 1$. \Box
Layers over Σ with cylindrical ends

Theorem [Carron-E.-Krejčiřík, 2004]: Assume $\langle \Omega_0 \rangle$, $\langle \Omega_1 \rangle$, $\langle \Sigma_0 \rangle$ and $\langle \Sigma_1 \rangle$. Let the reference surface Σ have $N \geq 1$ **cylindrically symmetric ends**, each with a positive total Gauss curvature. Let $\Omega' \subset \mathbb{R}^3$ be an unbounded, without boundary, obtained by a compact deformation of Ω. Then

- $\inf \sigma_{\text{ess}}(-\Delta_{\Omega'}) = \kappa_1^2$
- there is at least N ev’s in $\left(0, \kappa_1^2\right)$, counting multiplicity
Layers over Σ with cylindrical ends

Theorem [Carron-E.-Krejčiřík, 2004]: Assume $\langle \Omega_0 \rangle$, $\langle \Omega_1 \rangle$, $\langle \Sigma_0 \rangle$ and $\langle \Sigma_1 \rangle$. Let the reference surface Σ have $N \geq 1$ **cylindrically symmetric ends**, each with a positive total Gauss curvature. Let $\Omega' \subset \mathbb{R}^3$ be an unbounded, without boundary, obtained by a compact deformation of Ω. Then

- $\inf \sigma_{\text{ess}}(-\Delta_{\Omega'}^{\Omega}) = \kappa_1^2$
- there is at least N ev’s in $(0, \kappa_1^2)$, counting multiplicity

Sketch of the proof: Deriving the sufficient condition for cylindrical surfaces with $\mathcal{K} > 0$; we constructed sequences of trial functions “localised at infinity” we may use them for our Ω. Moreover, trial functions localized at different ends are orthogonal in $L^2(\Omega)$. Finally, these estimates as well as σ_{ess} are stable under compact deformations of Ω. \qed
Layers with ends: examples

Layer over Σ with multiple ends:
Layers with ends: examples

- **Layer over Σ with multiple ends:**

- **Conical layer:**
Weak coupling: preliminaries

Consider mildly curved quantum layers generated by a family of surfaces \(\Sigma_\varepsilon := p(\mathbb{R}^2) \) given by a Monge patch

\[
p : \mathbb{R}^2 \to \mathbb{R}^3, \quad p(x^1, x^2; \varepsilon) := (x^1, x^2, \varepsilon f(x^1, x^2))
\]

with \(f \in C^4 \) and ask what happens in the asymptotics \(\varepsilon \to 0 \).
Weak coupling: preliminaries

Consider *mildly curved quantum layers* generated by a family of surfaces \(\Sigma_\varepsilon := p(\mathbb{R}^2) \) given by a Monge patch

\[
p : \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad p(x^1, x^2; \varepsilon) := (x^1, x^2, \varepsilon f(x^1, x^2))
\]

with \(f \in C^4 \) and ask what happens in the asymptotics \(\varepsilon \rightarrow 0 \)

Regularity and decay assumptions:

\[
\langle d1, 4 \rangle f,\mu, f,\mu\nu\rho\sigma \in L^\infty(\mathbb{R}^2)
\]

\[
\langle d2, 3 \rangle f,\mu\nu, f,\mu\nu\rho \rightarrow 0 \quad \text{as} \quad |x| \rightarrow \infty
\]

They ensure, in particular, that \(\inf \sigma_{\text{ess}}(-\Delta_D^{\Omega_\varepsilon}) = \kappa_1^2 \)
Weak coupling: preliminaries

Consider mildly curved quantum layers generated by a family of surfaces \(\Sigma_\varepsilon := p(\mathbb{R}^2) \) given by a Monge patch

\[
p : \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad p(x^1, x^2; \varepsilon) := (x^1, x^2, \varepsilon f(x^1, x^2))
\]

with \(f \in C^4 \) and ask what happens in the asymptotics \(\varepsilon \rightarrow 0 \)

Regularity and decay assumptions:

\[
\langle d1, 4 \rangle f,_{\mu}, f,_{\mu\nu\rho\sigma} \in L^\infty(\mathbb{R}^2)
\]

\[
\langle d2, 3 \rangle f,_{\mu\nu}, f,_{\mu\nu\rho} \rightarrow 0 \quad \text{as} \quad |x| \rightarrow \infty
\]

They ensure, in particular, that \(\inf \sigma_{\text{ess}}(-\Delta_{D}^{\Omega_\varepsilon}) = \kappa_1^2 \)

Integral decay assumptions:

\[
\langle r1, 2 \rangle f,_{\mu\nu}, f,_{\mu\nu\rho} \in L^2(\mathbb{R}^2, (1 + |x|^\delta) \, dx)
\]

\[
\langle r3 \rangle f,_{\mu\nu\rho\sigma} \in L^1(\mathbb{R}^2, (1 + |x|^\delta) \, dx) \quad \text{for some} \quad \delta > 0
\]
Weak coupling: asymptotic expansion

Theorem [E.-Krejčiřík, 2001]: Let Ω_ε be layers generated by Σ_ε with $f \in C^4(\mathbb{R}^2)$ satisfying $\langle d1-4 \rangle$ and $\langle r1-3 \rangle$. If Σ_1 is not planar, then for all ε small enough $-\Delta_{D}^{\Omega_\varepsilon}$ has exactly one isolated eigenvalue $E(\varepsilon)$ below the essential spectrum, and

$$E(\varepsilon) = \kappa_1^2 - e^{2w(\varepsilon)^{-1}},$$

where $w(\varepsilon)$ has the following asymptotic expansion

$$w(\varepsilon) = -\varepsilon^2 \sum_{j=2}^{\infty} (\chi_j, u \chi_j) (\kappa_j^2 - \kappa_1^2)^2 \int_{\mathbb{R}^2} \frac{|\mathring{m}_0(\omega)|^2}{|\omega|^2 + \kappa_j^2 - \kappa_1^2} \, d\omega + \mathcal{O}(\varepsilon^{2+\gamma})$$

with $\gamma := \min\{1, \delta/2\}$. Here m_0 is the lowest-order term in the expansion of the mean curvature of Σ_ε w.r.t. ε.
Remarks

The sum in the asymptotic expansion runs in fact over even \(n \) only because one integrates over \((-a, a)\) on which \(u \mapsto \chi_1(u) u \chi_j(u) \) is odd for odd \(j \).
Remarks

The sum in the asymptotic expansion runs in fact over even \(n \) only because one integrates over \((-a, a)\) on which \(u \mapsto \chi_1(u) u \chi_j(u) \) is odd for odd \(j \).

The leading-term coefficient \(w_1 \) in the expansion \(w(\varepsilon) =: \varepsilon^2 w_1 + \mathcal{O}(\varepsilon^{2+\gamma}) \) does not have a very transparent structure. For thin layers it can be rewritten as

\[
 w_1 = -\frac{1}{2\pi} \|m_0\|^2 \frac{\pi^2 - 6}{24\pi^3} \|\nabla m_0\|^2 \delta^2 + \mathcal{O}(d^4),
\]

which is instructive because the first term comes from the surface attractive potential \(K - M^2 \) which dominates the picture in this case.
Birman-Schwinger analysis

Let $M \subset \mathbb{R}^m$, $m \geq 1$, be open connected precompact; put

$$H_\lambda = -\Delta_D + \lambda V$$

with $\lambda > 0$ on $\mathcal{H} := L^2(\mathbb{R}^2) \otimes L^2(M)$

where $-\Delta_D$ is the closure of $-\Delta \otimes I_m + I_2 \otimes -\Delta^M_D$
Birman-Schwinger analysis

Let $M \subset \mathbb{R}^m$, $m \geq 1$, be open connected precompact; put

$$H_\lambda = -\Delta_D + \lambda V \quad \text{with} \quad \lambda > 0 \quad \text{on} \quad \mathcal{H} := L^2(\mathbb{R}^2) \otimes L^2(M)$$

where $-\Delta_D$ is the closure of $-\Delta \otimes I_m + I_2 \otimes -\Delta^M_D$

Assumptions:

$$\langle a0 \rangle \quad \inf \sigma_{\text{ess}}(H_\lambda) \geq \kappa^2_1$$

$$\langle a1 \rangle \quad \exists \ a, b \geq 0 \quad \forall \psi \in W^{1,2}_0(\Omega_0) : \quad \|V \psi\| \leq a\|\psi\| + b \|H_0^{1/2} \psi\|$$

$$\langle a2 \rangle \quad |V|_{11} \in L^{1+\delta}(\mathbb{R}^2)$$

$$\langle a3 \rangle \quad |V|_{11} \in L^1(\mathbb{R}^2, (1 + |x|^\delta) \, dx)$$

where $V_{jj'} := \int_M \bar{\chi}_j(y) \, V(\cdot, y) \, \chi_{j'}(y) \, dy$ w.r.t. transverse basis of ef’s χ_j, $j = 1, 2, \ldots$ with ev’s $\kappa^2_1 < \kappa^2_2 \leq \ldots \leq \kappa^2_{j} < \ldots$
Birman-Schwinger analysis

The free resolvent operator can be rewritten as

\[R_0(\alpha) = \sum_{j=1}^{\infty} \chi_j \left(-\Delta + k_j(\alpha)^2 \right)^{-1} \bar{\chi}_j, \quad k_j(\alpha) := \sqrt{\kappa_j^2 - \alpha^2} \]

We are interested in ev’s below \(\kappa_1^2 \), i.e. \(\alpha \in [0, \kappa_1) \), when

\[R_0(x, y, x', y'; \alpha) = \frac{1}{2\pi} \sum_{j=1}^{\infty} \chi_j(y) K_0 \left(k_j(\alpha)|x - x'| \right) \bar{\chi}_j(y') \]
Birman-Schwinger analysis

The free resolvent operator can be rewritten as

\[R_0(\alpha) = \sum_{j=1}^{\infty} \chi_j \left(-\Delta + k_j(\alpha)^2 \right)^{-1} \bar{\chi}_j, \quad k_j(\alpha) := \sqrt{\kappa_j^2 - \alpha^2} \]

We are interested in ev’s below \(\kappa_1^2 \), i.e. \(\alpha \in [0, \kappa_1) \), when

\[R_0(x, y, x', y'; \alpha) = \frac{1}{2\pi} \sum_{j=1}^{\infty} \chi_j(y) K_0 \left(k_j(\alpha)|x - x'| \right) \bar{\chi}_j(y') \]

Define \(K(\alpha) := |V|^{1/2} R_0(\alpha) V^{1/2} \), where \(V^{1/2} := |V|^{1/2}\text{sgn} V \).

By *Birman-Schwinger principle* \(\alpha(\lambda)^2 \equiv E(\lambda) \) is an ev of \(H_\lambda \) iff \(\lambda K(\alpha) \) has eigenvalue \(-1\), in other words

\[\alpha^2 \in \sigma_{\text{disc}}(H_\lambda) \iff -1 \in \sigma_{\text{disc}}(\lambda K(\alpha)) \]
BS analysis: decomposition

One has to split the logarithmic singularity responsible for the weakly coupled ev. Put $K(\alpha) = L_\alpha + M_\alpha$, where

$$L_\alpha(x, y, x', y') := -\frac{1}{2\pi} |V(x, y)|^{1/2} \chi_1(y) \ln k_1(\alpha) \chi_1(y') V(x', y')^{1/2}$$

contains the singularity and M_α splits into two parts again, $M_\alpha = A_\alpha + B_\alpha$ with B_α being the projection of resolvent onto higher transverse modes, $j \geq 2$.
BS analysis: decomposition

One has to split the logarithmic singularity responsible for the weakly coupled ev. Put $K(\alpha) = L_\alpha + M_\alpha$, where

$$L_\alpha(x, y, x', y') := -\frac{1}{2\pi} |V(x, y)|^{1/2} \chi_1(y) \ln k_1(\alpha) \chi_1(y') V(x', y')^{1/2}$$

contains the singularity and M_α splits into two parts again, $M_\alpha = A_\alpha + B_\alpha$ with B_α being the projection of resolvent onto higher transverse modes, $j \geq 2$

On the other hand, the operator A_α has the kernel

$$\frac{1}{2\pi} |V(x, y)|^{1/2} \chi_1(y) \left(K_0(k_1(\alpha)|x - x'|) + \ln k_1(\alpha)\right) \chi_1(y') V(x', y')^{1/2}$$

Note that M_α is well defined for $\alpha = \kappa_1$
Using asymptotic behaviour of K_0 we deduce

Lemma [E.-Krejčiřík, 2001]: Assume $\langle a1-3 \rangle$, then there are positive C_2, C_3 and C_4 such that

- $\forall \alpha \in [0, \kappa_1] : \| M_\alpha \| < C_2$
- $\| M_\alpha - M_{\kappa_1} \| \leq C_3 \lambda^\gamma$ with $\gamma := \min\{1, \delta/2\}$,
- $\left\| \frac{dM_\alpha(w)}{dw} \right\| < C_4 |w|^{-1}$ for λ small enough, $w := (\ln k_1(\alpha))^{-1}$
BS analysis: eliminating regular part

Using asymptotic behaviour of K_0 we deduce

Lemma [E.-Krejčiřík, 2001]: Assume $\langle a1-3 \rangle$, then there are positive C_2, C_3 and C_4 such that

1. $\forall \alpha \in [0, \kappa_1]: \| M_\alpha \| < C_2$
2. $\| M_\alpha - M_{\kappa_1} \| \leq C_3 \lambda^\gamma$ with $\gamma := \min\{1, \delta/2\}$,
3. $\left\| \frac{dM_\alpha(w)}{dw} \right\| < C_4 |w|^{-1}$ for λ small enough, $w := (\ln \kappa_1(\alpha))^{-1}$

Next we employ the factorization

$$(I + \lambda K(\alpha))^{-1} = [I + \lambda (I + \lambda M_\alpha)^{-1} L_\alpha]^{-1} (I + \lambda M_\alpha)^{-1}$$

By the lemma we have $\| \lambda M_\alpha \| < 1$ for small λ, the second factor is invertible and the singularities are determined by the first one
BS analysis: eliminating regular part

Observe that \(\lambda (I + \lambda M_\alpha)^{-1} L_\alpha \) is rank-one operator of the form \((\psi, \cdot)\varphi\), where

\[
\psi(x, y) := -\frac{\lambda}{2\pi} \ln k_1(\alpha) V(x, y)^{1/2} \chi_1(y),
\]

\[
\varphi(x, y) := [(I + \lambda M_\alpha)^{-1} |V|^{1/2} \chi_1](x, y),
\]

so it has just one eigenvalue \((\psi, \varphi)\)
BS analysis: eliminating regular part

Observe that $\lambda (I + \lambda M_\alpha)^{-1} L_\alpha$ is rank-one operator of the form $(\psi, \cdot) \varphi$, where

$$
\psi(x, y) := -\frac{\lambda}{2\pi} \ln k_1(\alpha) V(x, y)^{1/2} \chi_1(y),
$$

$$
\varphi(x, y) := [(I + \lambda M_\alpha)^{-1} |V|^{1/2} \chi_1](x, y),
$$

so it has just one eigenvalue (ψ, φ)

If the latter should equal -1 we get the implicit equation

$$
w = F(\lambda, w), \quad F(\lambda, w) := \frac{\lambda}{2\pi} \left(V^{1/2} \chi_1, (I + \lambda M_\alpha(w))^{-1} |V|^{1/2} \chi_1 \right)
$$

with variable w related to the energy via $\alpha^2 = \kappa_1^2 - e^{2w^{-1}}$
BS analysis: main result

Theorem [E.-Krejčířík, 2001]: Assume $\langle a0-3 \rangle$ and $V \neq 0$, then H_λ has for small enough $\lambda > 0$ exactly one ev $E(\lambda)$ iff

$$\int_{\mathbb{R}^2} V_{11}(x) \, dx \leq 0$$

and in this case we can have $E(\lambda) = \kappa_1^2 - e^{2w(\lambda)^{-1}}$, where

$$w(\lambda) = \frac{\lambda}{2\pi} \int_{\mathbb{R}^2} V_{11}(x) \, dx$$

$$+ \left(\frac{\lambda}{2\pi} \right)^2 \left\{ \int_{\mathbb{R}^2 \times \mathbb{R}^2} V_{11}(x) \left(\gamma_E + \ln \frac{|x-x'|}{2} \right) V_{11}(x') \, dx \, dx' \right. \right.$$

$$- \sum_{j=2}^{\infty} \int_{\mathbb{R}^2 \times \mathbb{R}^2} V_{1j}(x) K_0(k_j(\kappa_1)|x-x'|) V_{j1}(x') \, dx \, dx' \right\} + O(\lambda^{2+\gamma})$$

with $\gamma := \min\{1, \delta/2\}$
Application to mildly curved layers

For the family of surfaces under consideration we have

\[g_{\mu\nu}(\varepsilon) = \delta_{\mu\nu} + \varepsilon^2 \eta_{\mu\nu}, \quad (\eta_{\mu\nu}) := \begin{pmatrix} f_{,1}^2 & f_{,1} f_{,2} \\ f_{,1} f_{,2} & f_{,2}^2 \end{pmatrix} \]

\[g(\varepsilon) := \det(g_{\mu\nu}) = 1 + \varepsilon^2 \text{tr}(\eta_{\mu\nu}) = 1 + \varepsilon^2 (f_{,1}^2 + f_{,2}^2) \]

\[h_{\mu\nu}(\varepsilon) = \varepsilon g(\varepsilon)^{-\frac{1}{2}} \theta_{\mu\nu}, \quad (\theta_{\mu\nu}) := \begin{pmatrix} f_{,11} & f_{,12} \\ f_{,21} & f_{,22} \end{pmatrix} \]
Application to mildly curved layers

For the family of surfaces under consideration we have

\[g_{\mu\nu}(\varepsilon) = \delta_{\mu\nu} + \varepsilon^2 \eta_{\mu\nu}, \quad (\eta_{\mu\nu}) := \begin{pmatrix} f_{,1}^2 & f_{,1} f_{,2} \\ f_{,1} f_{,2} & f_{,2}^2 \end{pmatrix} \]

\[g(\varepsilon) := \det(g_{\mu\nu}) = 1 + \varepsilon^2 \text{tr}(\eta_{\mu\nu}) = 1 + \varepsilon^2 (f_{,1}^2 + f_{,2}^2) \]

\[h_{\mu\nu}(\varepsilon) = \varepsilon g(\varepsilon)^{-\frac{1}{2}} \theta_{\mu\nu}, \quad (\theta_{\mu\nu}) := \begin{pmatrix} f_{,11} & f_{,12} \\ f_{,21} & f_{,22} \end{pmatrix} \]

This gives, in particular, the curvatures

\[K(\varepsilon) = \delta_{\mu\nu} \varepsilon^2 g(\varepsilon)^{-2} k_0, \quad k_0 := \det(\theta_{\mu\nu}) = f_{,11} f_{,22} - f_{,12}^2 \]

\[M(\varepsilon) = \varepsilon g(\varepsilon)^{-\frac{3}{2}} (m_0 + \varepsilon^2 m_1), \quad m_0 := \frac{1}{2} \text{tr}(\theta_{\mu\nu}) = \frac{1}{2} (f_{,11} + f_{,22}) \]

\[m_1 := \frac{1}{2} \text{tr}(\theta_{\mu\rho} \tilde{\eta}^{\rho\nu}) = \frac{1}{2} (f_{,1}^2 f_{,22} + f_{,2}^2 f_{,11} - 2f_{,1} f_{,2} f_{,12}) \]
Application to mildly curved layers

Now we apply the BS result, estimating the Hamiltonian by

\[H_- \leq H \leq H_+ \quad \text{with} \quad H_\pm := -\Delta - \partial_3^2 + \varepsilon V_\pm, \]

where

\[V_\pm(x, u) := \frac{1}{\varepsilon} \left(\frac{C_\pm}{C_\mp^2} u_1 + V_2 \right) (x/\sigma_\pm, u) \]

with \(\sigma_\pm^2 := c_\mp^3 C_\mp^2 / (c_\pm^2 C_\pm) \), where \(c_\pm := 1 \pm \varepsilon^2 \| \eta_{\mu\nu} \|. \)
Application to mildly curved layers

Now we apply the BS result, estimating the Hamiltonian by

\[H_- \leq H \leq H_+ \quad \text{with} \quad H_\pm := -\Delta - \partial^2 + \varepsilon V_\pm, \]

where

\[V_\pm(x, u) := \frac{1}{\varepsilon} \left(\frac{C_\pm}{C^2_\mp} v_1 + V_2 \right)(x/\sigma_\pm, u) \]

with \(\sigma^2_\pm := c_\mp^3 C_\pm^2/(c^2_\pm C_\mp) \), where \(c_\pm := 1 \pm \varepsilon^2 \|\eta_{\mu\nu}\| \).

Furthermore, \(V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2} \) is as before and

\[v_1 := -\frac{|u^2 \nabla_g K - 2u \nabla_g M|^2}{4(1 - 2Mu + Ku^2)^2} + \frac{u^2 \Delta_g K - 2u \Delta_g M}{2(1 - 2Mu + Ku^2)} \]

Since \(v_1 \) and \(V_2 \) are \(\varepsilon \)-dependent, \(V_\pm \) are well defined even for \(\varepsilon = 0 \). Expansion in \(\varepsilon \) yields the announced result.
Weak coupling: main result again

Theorem [E.-Krejčiřík, 2001]: Let Ω_ε be layers generated by Σ_ε with $f \in C^4(\mathbb{R}^2)$ satisfying $\langle d1-4 \rangle$ and $\langle r1-3 \rangle$. If Σ_1 is not planar, then for all ε small enough $-\Delta_{D}^{\Omega_\varepsilon}$ has exactly one isolated eigenvalue $E(\varepsilon)$ below the essential spectrum, and

$$E(\varepsilon) = \kappa_1^2 - e^{2w(\varepsilon)^{-1}},$$

where $w(\varepsilon)$ has the following asymptotic expansion

$$w(\varepsilon) = -\varepsilon^2 \sum_{j=2}^{\infty} (\chi_1, u\chi_j) \left(\kappa_j^2 - \kappa_1^2 \right)^2 \int_{\mathbb{R}^2} \frac{|\widehat{m}_0(\omega)|^2}{|\omega|^2 + \kappa_j^2 - \kappa_1^2} d\omega + O(\varepsilon^{2+\gamma})$$

with $\gamma := \min\{1, \delta/2\}$. Here m_0 is the lowest-order term in the expansion of the mean curvature of Σ_ε w.r.t. ε.
Open questions

- **Existence for \(\mathcal{K} > 0 \):** recently Lu-Lin announced proof for ends which are graphs of a convex function.

 More generally: when does \(\mathcal{K} > 0 \) imply \(\mathcal{M} = \infty \)?
Open questions

- **Existence for** $\mathcal{K} > 0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. **More generally:** when does $\mathcal{K} > 0$ imply $\mathcal{M} = \infty$?

- **Layers with non-smooth boundary:** existence proofs, mode matching, examples
Open questions

- **Existence for \(K > 0 \):** recently Lu-Lin announced proof for ends which are graphs of a convex function. *More generally:* when does \(K > 0 \) imply \(M = \infty \)?

- **Layers with non-smooth boundary:** existence proofs, mode matching, examples

- **Perturbation theory** with respect to various parameters, in particular, the layer thickness
Open questions

- **Existence for $\mathcal{K} > 0$:** recently Lu-Lin announced proof for ends which are graphs of a convex function. *More generally:* when does $\mathcal{K} > 0$ imply $\mathcal{M} = \infty$?

- **Layers with non-smooth boundary:** existence proofs, mode matching, examples

- **Perturbation theory** with respect to various parameters, in particular, the layer thickness

- **Discrete spectra properties:** find bounds on the # of bound states, location of the ev’s, etc.
Open questions

- **Existence for $\mathcal{K} > 0$:** recently Lu-Lin announced proof for ends which are graphs of a convex function. *More generally:* when does $\mathcal{K} > 0$ imply $\mathcal{M} = \infty$?

- **Layers with non-smooth boundary:** existence proofs, mode matching, examples

- **Perturbation theory** with respect to various parameters, in particular, the layer thickness

- **Discrete spectra properties:** find bounds on the # of bound states, location of the ev’s, etc.

- **Scattering in curved layers:** existence and completeness, resonances at thresholds, etc.
Open questions

- **Existence for** $\mathcal{K} > 0$: recently Lu-Lin announced proof for ends which are graphs of a convex function. **More generally:** when does $\mathcal{K} > 0$ imply $\mathcal{M} = \infty$?

- **Layers with non-smooth boundary:** existence proofs, mode matching, examples

- **Perturbation theory** with respect to various parameters, in particular, the layer thickness

- **Discrete spectra properties:** find bounds on the $\#$ of bound states, location of the ev’s, etc.

- **Scattering in curved layers:** existence and completeness, resonances at thresholds, etc.

- **Periodically curved layers:** absolute continuity of the spectrum, existence of gaps
Open questions

- **Existence for $K > 0$:** recently Lu-Lin announced proof for ends which are graphs of a convex function. **More generally:** when does $K > 0$ imply $M = \infty$?

- **Layers with non-smooth boundary:** existence proofs, mode matching, examples

- **Perturbation theory** with respect to various parameters, in particular, the layer thickness

- **Discrete spectra properties:** find bounds on the # of bound states, location of the ev’s, etc.

- **Scattering in curved layers:** existence and completeness, resonances at thresholds, etc.

- **Periodically curved layers:** absolute continuity of the spectrum, existence of gaps

- **More questions:** layers with magnetic fields, regular and singular potential perturbations, etc.
The talk was based on

The talk was based on

for more information see http://www.ujf.cas.cz/~exner