- R. Adami (Roma):
*The anisotropic Aharonov-Bohm effect* - T. Alferova (Gomel):
*Relativistic two-particle one-dimensional scattering problem for superposition of delta potentials* - A. Boutet de Monvel (Paris 7):
*On the spectral properties of discrete Schroedinger operators* - F. Brambila Paz (Mexico City):
*Lax-Phillips scattering theory for short and long range perturbations* - J. Brasche (Bonn):
*Inverse spectral theory for self-adjoint extensions* - J.L. Carinena (Zaragoza):
*The Riccati equation and exactly solvable Hamiltonians* - G. Chadzitaskos (Prague):
*Coherent states over C^M* - T. Cheon (Kochi):
*Exotic wavefunction aholonomy in one-dimensional quantum mechanics of generalized pointlike potentials* - M. Combescure (Orsay):
*A rigorous proof of Gutzwiller's trace formula* - D. Damanik (Frankfurt a.M.):
*Singular continuous spectrum for substitution Hamiltonians* - M. Damnjanovic (Beograd):
*Generalized Heisenberg-Dirac Hamiltonian* - S. De Bievre (Lille):
*On the semi-classical analysis of quantized "chaotic" maps on the torus* - M. Demuth (Clausthal):
*Generalized Pearson estimate for wave operators* - O. Deryuzkova (Gomel):
*Solving of the main equation of Poincare invariant quantum mechanics for model potential* - J. Dittrich (Prague):
*Massive scalar field in in an oscillating bounded region* - E. Elizalde (Barcelona):
*The determinant anomaly in low-dimensional quantum systems* - L. Erdos (Courant):
*Linear Boltzmann equation as a kinetic limit of random Schroedinger equation* - P. Exner (Prague):
*Two results about vortices: "smoke loops" in transport and anomalous Pauli trapping* - Y. Fyodorov (Essen):
*S-matrix statistics in quantum chaotic scattering: poles, phaseshifts and time delays* - F. Germinet (Paris 7):
*Dynamical localization and spectral properties. Application to random and quasi-periodic Schroedinger operators* - V. Geyler (Saransk):
*Band structure of the spectrum in some models with a magnetic field* - S. Gnutzmann (Essen):
*Quantum chaos and SU(3) dynamics* - G. Goldin (Rutgers):
*Quantum kinematics of vortex filaments* - B. Grebert (Nantes):
*KAM theorem for nonlinear Schroedinger operator* - M. Griesemer (Regensburg):
*Instability for relativistic matter with self-generated magnetic fields* - M. Gruber (Berlin):
*Spectral nature of the Schroedinger operator with periodic magnetic field (rational flux)* - Ch.-A. Guerin (Marseille):
*Time-dependent scattering on fractal measures* - J.-C. Guillot (Paris 13):
*Inverse scattering at fixed energy for layered media* - Z. Haba (Wroclaw):
*The classical limit of quantum dissipative systems* - A. Hassell (Canberra):
*Scattering calculus and the N-body problem* - D. Herrmann (Nijmegen):
*On spectral properties of Harper-like models* - H. Hirata (Tokyo):
*An example of a second-kind phase transition for some discrete Schroedinger operators with magnetic potential* - P. Hislop (Lexington):
*Correlated Wegner inequalities and localization for long-range and correlated potentials* - M. Horvath (Budapest):
*Convergence and localization properties of the spectral expansion of Schroedinger and Dirac operators* - L.P. Horwitz (Tel Aviv):
*Representation of quantum mechanical resonances in the framework of Lax-Phillips scattering theory* - Th. Hupfer (Erlangen):
*On upper bounds on the density of states for continuum Schroedinger operators with Gaussian random potentials and magnetic fields* - V. Inozemtsev (Dubna):
*Quantum Heisenberg chain with elliptic exchange* - V. Ivrii (Toronto):
*Asymptotics of the ground state energy and ionization energy for atoms and molecules in strong magnetic field* - A. Kargol (Famagusta):
*A semiclassical method for Coulomb scattering* - W. Karwowski (Wroclaw):
*Schroedinger operators perturbed by operators related to null sets* - M. Kiessling (Rutgers):
*On eigenvalue density of random matrices* - W. Kirsch (Bochum):
*On the spectral theory of random Schroedinger operators* - F. Kleespies (Frankfurt a.M.):
*Localization and Lifshitz tails for random quantum waveguides* - F. Klopp (Paris 13):
*Large energy asymptotics for the integrated density of states of unbounded random Jacobi matrix* - B. Konya (Debrecen):
*Charged particle in combined Coulomb plus homogeneous magnetic field* - E. Korotyaev (St. Petersburg):
*Inverse problem for the Hill operator and estimates* - V. Koshmanenko (Kiev):
*Construction and spectral properties of singularly perturbed operators* - I. Krasovsky (Dresden):
*Explicit solution to some second-order differential and q-difference eigenvalue equations related to sl_2 and U_q(sl_2)* - J. Krause (Santiago do Chile):
*Solvable models in non-Abelian quantum kinematics and dynamics* - D. Krejcirik (Prague):
*Birman-Schwinger analysis for bound states in a pair of parallel quantum waveguides with a semitransparent boundary* - P. Kuchment (Wichita):
*On spectral problems of photonic crystals theory* - U. Kuhl (Marburg):
*A microwave realization of the Hofstadter butterfly* - P. Kurasov (Stockholm):
*Few-body Krein's formula* - P. Leach (Durban):
*A classicist's opinion on quantum chaos* - G. Levai (Debrecen):
*Exactly solvable quantum mechanical potential problem* - P. Levay (Budapest):
*Adiabatic curvature, chaos, and deformations of Riemann surfaces* - B. Meller (Satiago de Chile):
*Resonances in a box* - V. Mikhailets (Bialystok):
*Schroedinger operators with local point interactions in dimension one* - I. Milosevic (Beograd):
*Symmetry classification of carbon nanotubes* - A. Moroz (Amsterdam):
*"Gapology" for photonic crystals* - A. Motovilov (Dubna):
*Operator interpretation of resonances arising in spectral problem for 2x2 matrix Hamiltonians* - P. Mueller (Goettingen):
*Aspects of a localization proof for continuum Schroedinger operators with Gaussian random potentials* - O. Mustafa (Famagusta):
*The shifted-l expansion technique to get eigenvalues of Schroedinger, Dirac, and Klein-Gordon wave equation* - H. Neidhardt (Potsdam):
*Operator-norm convergence for the Trotter-Kato product formula* - M. Novitskii (Kharkov):
*Nonexponential estimates of the angle between stable and unstable separatrices for Taylor-Chirikov-Green mapping* - P. O'Hara (Chicago):
*Bell's inequality and the Pauli exclusion principle* - A. Onipko (Kiev):
*Quantum conductance of molecular wires: Green function description of real systems* - Z. Papp (Debrecen):
*The three-body Coulomb problem in three-potential formalism* - S. Pascazio (Bari):
*Temporal evolutions in quantum mechanics and quantum Zeno effect* - V. Pivovarchik (Odessa):
*Some examples of inverse Sturm-Liouville problem with three spectra* - I. Popov (St. Petesburg):
*Solvable models for serially connected Aharonov-Bohm rings and localization effects* - G. Raikov (Sofia):
*Asymptotic properties of the "magnetic" density of states* - L. Remezo (Liege):
*Symmetries of a completely integrable Hamiltonian system* - Ch. Remling (Osnabrueck):
*Embedded singular spectrum of 1D Schroedinger operators* - W. Renger (Clausthal):
*Limiting absorption principle for singularly perturbed operators* - D. Robert (Nantes):
*Spectral shift function for the Dirac operator* - G. Rozenblioum (Goteborg):
*Eigenvalue estimates for Schroedinger-like operators with magnetic field* - M.B. Ruskai (Lowell):
*One-dimensional models for many-electron atoms in strong magnetic fields* - L. Sadun (Austin):
*Generic behavior of topological quantum numbers* - O. Safronov (Stockholm):
*The discrete spectrum in the gaps of the continuous one for sign indefinite perturbations with a large coupling constant* - W. Scherer (Clausthal):
*KAM theory for quantum systems* - Ch. Schulte (Clausthal):
*Quantum-mechanical symmetries and self-adjoint extensions on the pointed plane* - P. Seba (Slemeno):
*Resonance trapping in a weakly open quantum dot* - I. Shereshevsky (Nizhni Novgorod):
*Vortices in Ginzburg-Landau equation: numerical results and analytical problems* - K. Shundyak (Odessa):
*Conductance of interacting region attached to noninteracting leads* - G. Sobczyk (Puebla, Mexico):
*Mathematics of quantum computing* - S.B. Sontz (Mexico City):
*A reverse log-Sobolev inequality in the Segal-Bargmann space* - W. Spitzer (Princeton):
*Hydrodynamics of quasi-free quantum systems* - G. Stolz (Birmingham, Al.):
*Multiparameter spectral averaging and localization for the random displacement model* - P. Stovicek (Prague):
*Perturbation of an eigenvalue from a dense point spectrum: a general Floquet Hamiltonian* - A. Streltsov (Vladivostok):
*Solving the Schroedinger equation with nonsingular potential using Hamiltonian degrees* - T. Suslina (St. Petersburg):
*Two-dimensional periodic Pauli operator. Effective masses at the lower edge of the spectrum* - A. Suzko (Dubna):
*Bargmann-Darboux transformations for nonstationary Schroedinger equations* - S. Tcheremchantsev (Orleans):
*Transport properties of Markovian Anderson model* - A. Teta (Rome):
*Schroedinger equation with concentrated nonlinearities* - A. Tip (Amsterdam):
*Quantization of conservative and lossy dielectrics* - N. Topor (Schenectady):
*Perturbation theory for boundary S-matrix in 2D quantum field theory* - O. Vakhnenko (Kiev):
*Bend-imitating approach in quantum wire-like nanostructures* - C. Villegas-Blas (Cuernavaca Morelos):
*The Segal-Barmann transform and canonical transformations* - J. Voigt (Dresden):
*The non-autonomous Kato class* - K. Watanabe (Tokyo):
*Some applications of the H_{-2}-construction* - T. Weidl (Stockholm):
*Another look at Cwikel's inequality* - D. Yafaev (Rennes):
*The discrete spectrum in the singular Friedrichs model with oscillating kernel* - J. Yanez (Santiago de Chile):
*Variational principle for the chemical potential in the Thomas-Fermi theory* - K. Yoshitomi (Fukuoka):
*Band-gap of the spectrum in periodically curved quantum waveguides* - V. Zagrebnov (Marseille):
*Error estimates for the Trotter product formula* - N. Zettili (Dhahran):
*Construction of an exactly solvable fermion model* - G.M. Zhislin (Nizhni Novgorod):
*The present state of the study of the discrete spectrum of many-particle Hamiltonians with homogeneous magnetic field for particles with finite masses* - E. Zhizhina (Moscow):
*A spectral analysis of stochastic disordered Ising model* - M. Znojil (Prague):
*Asymptotically decreasing potentials with discrete spectra*

Other participants who present no talk or do so through a co-author:

- F. Bentosela (Marseille)
- S. Boecker (Bochum)
- P. Facchi (Bari)
- G.M. Graf (ETH Zurich)
- R. Guardiola (Valencia)
- H. Knoerrer (ETH Zurich)
- J. Lang (Prague)
- D. Lenz (Frankfurt a.M.)
- H. Leschke (Erlangen)
- B. Meller (Santiago de Chile)
- H. Najar (Paris 13)
- F. Nakano (Sendai)
- S. Perez-Oyarzun (Santiago de Chile)
- Ch. Riebling (Bochum)
- R. Sims (Birmingham, Al.)
- I. Veselic (Bochum)
- S. Warzel (Erlangen)
- J.L. Zuleta (Geneve)

**Updated: June 18, 1998 **