Nonlinear Eigenvalue Problems and \(\mathcal{PT} \)-Symmetric Hamiltonians

Qing-hai Wang

National University of Singapore

Analytic and Algebraic Methods in Physics
6-9 June 2016
Prague, Czech Republic

Work in progress with Carl M. Bender
Outline

1. Linear Eigenvalue Problems
2. Painlevé Transcendental Equations I and II
3. Super Painlevé Equations
4. Conclusion and Future Work
Outline

1. **Linear Eigenvalue Problems**
 - Schrödinger equation
 - Separatrix

2. **Painlevé Transcendental Equations I and II**

3. **Super Painlevé Equations**

4. **Conclusion and Future Work**
Schrödinger equation

- Schrödinger equation for the harmonic oscillator:

$$-\frac{1}{2}\psi''(x) + \frac{1}{2}x^2\psi(x) = E\psi(x).$$
Schrödinger equation

- Schrödinger equation for the harmonic oscillator:

\[-\frac{1}{2} \psi''(x) + \frac{1}{2} x^2 \psi(x) = E \psi(x).\]

- Large x-behavior:

\[
\psi(x) \sim D_1 \exp \left[\int_{s_0}^{x} ds \sqrt{s^2 - 2E} \right] \\
+ D_2 \exp \left[- \int_{s_0}^{x} ds \sqrt{s^2 - 2E} \right], \quad x \to \pm \infty.
\]
Schrödinger equation

- Schrödinger equation for the harmonic oscillator:
 \[-\frac{1}{2}\psi''(x) + \frac{1}{2}x^2\psi(x) = E\psi(x)\].

- Large x-behavior:
 \[
 \psi(x) \sim D_1 \exp \left[\int_x^x ds \sqrt{s^2 - 2E} \right] + D_2 \exp \left[-\int_x^x ds \sqrt{s^2 - 2E} \right], \quad x \to \pm \infty.
 \]

- The eigenvalue problem: Choose eigenvalues E such that
 \[
 \psi(x) \to 0, \quad \text{for} \quad x \to \pm \infty.
 \]
Eigenstates are (unstable) separatrix solutions
Outline

1. Linear Eigenvalue Problems

2. Painlevé Transcendental Equations I and II
 - Painlevé I: $y''(x) = 6y^2(x) + x$
 - Painlevé II: $y''(x) = 2y^3(x) + xy(x) + \alpha$
 - Relation with PT-symmetric Hamiltonians

3. Super Painlevé Equations

4. Conclusion and Future Work
Asymptotic analysis of PI

Three-term equation ⇒ three possible dominant balances.

1. Movable singularities: \(y''(x) \sim 6y^2(x) \gg x, \)

\[
y(x) = \frac{1}{(x - x_0)^2} \left[1 + \sum_{n=1}^\infty a_n (x - x_0)^n \right],
\]

where \(x_0 \) and \(a_6 \) are two arbitrary constants ⇒ general solutions.
Asymptotic analysis of PI

Three-term equation ⇒ three possible dominant balances.

1. Movable singularities: \(y''(x) \sim 6y^2(x) \gg x, \)

\[
y(x) = \frac{1}{(x-x_0)^2} \left[1 + \sum_{n=1}^{\infty} a_n (x-x_0)^n \right],
\]

where \(x_0 \) and \(a_6 \) are two arbitrary constants ⇒ general solutions.

2. Large (negative) \(x \) behavior: \(6y^2(x) \sim -x \gg y''(x), \)

\[
y(x) \sim \pm \sqrt{-\frac{x}{6}}, \quad x \to -\infty.
\]

⇒ Two asymptotes as \(x \to -\infty. \)
Asymptotic analysis of PI

Three-term equation ⇒ three possible dominant balances.

1. Movable singularities: \(y''(x) \sim 6y^2(x) \gg x, \)

\[
y(x) = \frac{1}{(x - x_0)^2} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^n \right],
\]

where \(x_0 \) and \(a_6 \) are two arbitrary constants ⇒ general solutions.

2. Large (negative) \(x \) behavior: \(6y^2(x) \sim -x \gg y''(x), \)

\[
y(x) \sim \pm \sqrt{-\frac{x}{6}}, \quad x \to -\infty.
\]

⇒ Two asymptotes as \(x \to -\infty. \)

3. The third dominant balance, \(y''(x) \sim x \gg y^2(x), \) is inconsistent.
Hyperasymptotic analysis

Let $Y(x)$ be a small difference between two nearby solutions, $Y(x) \equiv y(x) - y_0(x)$, where $y_0(x)$ and $y(x)$ are solutions of PI.
Hyperasymptotic analysis

- Let $Y(x)$ be a small difference between two nearby solutions, $Y(x) \equiv y(x) - y_0(x)$, where $y_0(x)$ and $y(x)$ are solutions of PI.
- To the leading order, $Y(x)$ satisfies a linear differential equation,

$$Y''(x) \sim 12y_0(x)Y(x), \quad x \to -\infty.$$
Hyperasymptotic analysis

- Let $Y(x)$ be a small difference between two nearby solutions, $Y(x) \equiv y(x) - y_0(x)$, where $y_0(x)$ and $y(x)$ are solutions of PI.
- To the leading order, $Y(x)$ satisfies a linear differential equation,
 \[Y''(x) \sim 12y_0(x)Y(x), \quad x \to -\infty. \]
- Oscillating around the lower asymptote, $y_0(x) \sim -\sqrt{-x/6}$,
 \[Y(x) \sim D \cos \left[5 \cdot 3^{1/4} \left(-\frac{1}{2}x \right)^{5/4} + \phi \right]. \]

†Bender, Fring, & Komijani, J.Phys.A (2014)
Painlevé Transcendental Equations I and II

Painlevé I: $y''(x) = 6y^2(x) + x$

Hyperasymptotic analysis

- Let $Y(x)$ be a small difference between two nearby solutions, $Y(x) \equiv y(x) - y_0(x)$, where $y_0(x)$ and $y(x)$ are solutions of PI.

- To the leading order, $Y(x)$ satisfies a linear differential equation,

 $$Y''(x) \sim 12y_0(x)Y(x), \quad x \to -\infty.$$

- Oscillating around the lower asymptote, $y_0(x) \sim -\sqrt{-x/6}$,

 $$Y(x) \sim D \cos \left[5 \cdot 3^{1/4} \left(-\frac{1}{2}x\right)^{5/4} + \phi\right].$$

- Unstable around the upper asymptote, $y_0(x) \sim \sqrt{-x/6}$,

 $$Y(x) \sim D_1 \exp \left[5 \cdot 3^{1/4} \left(-\frac{1}{2}x\right)^{5/4}\right] + D_2 \exp \left[-5 \cdot 3^{1/4} \left(-\frac{1}{2}x\right)^{5/4}\right].$$

Nonlinear eigenvalue problems†: Choose initial conditions such that $D_1 = 0$.

†Bender, Fring, & Komijani, J.Phys.A (2014)
Two initial conditions \Rightarrow two eigenvalue problems

1. Fixed $y(0) = c$, tune $y'(0) = b_n$.
Two initial conditions ⇒ two eigenvalue problems

1. Fixed $y(0) = c$, tune $y'(0) = b_n$.

2. Fixed $y'(0) = b$, tune $y(0) = c_n$.

Painlevé I: $y''(x) = 6y^2(x) + x$
Asymptotic analysis of PII

For simplicity, set $\alpha = 0 \Rightarrow$ three-term equation.

1. Movable singularities: $y''(x) \sim 2y^3(x) \gg x$,

$$y(x) = \pm \frac{1}{(x - x_0)^1} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^n \right],$$

where x_0 and a_4 are two arbitrary constants \Rightarrow general solutions.
Asymptotic analysis of PII

For simplicity, set $\alpha = 0 \Rightarrow$ three-term equation.

1. Movable singularities: $y''(x) \sim 2y^3(x) \gg x,$

$$y(x) = \pm \frac{1}{(x - x_0)^{1}} \left[1 + \sum_{n=1}^{\infty} a_n(x - x_0)^n \right],$$

where x_0 and a_4 are two arbitrary constants \Rightarrow general solutions

2. Large (negative) x behavior: $2y^3(x) \sim -xy(x) \gg y''(x),$

$$y(x) \sim \pm \sqrt{-\frac{x}{2}}, \quad x \to -\infty.$$

Two asymptotes as $x \to -\infty$ & one trivial solution, $y(x) = 0.$
Asymptotic analysis of PII

For simplicity, set $\alpha = 0 \Rightarrow$ three-term equation.

1. Movable singularities: $y''(x) \sim 2y^3(x) \gg x,$

$$y(x) = \pm \frac{1}{(x - x_0)^{\frac{1}{2}}} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^n \right],$$

where x_0 and a_4 are two arbitrary constants \Rightarrow general solutions.

2. Large (negative) x behavior: $2y^3(x) \sim -xy(x) \gg y''(x),$

$$y(x) \sim \pm \sqrt{-\frac{x}{2}}, \quad x \to -\infty.$$

Two asymptotes as $x \to -\infty$ & one trivial solution, $y(x) = 0.$

3. Airy function-like behavior: $y''(x) \sim xy(x) \gg y^3(x).$
Fluctuations about the asymptotes

Let $Y(x)$ be a small difference between two nearby solutions, $Y(x) \equiv y(x) - y_0(x)$, where $y_0(x)$ and $y(x)$ are solutions of PII.
Fluctuations about the asymptotes

- Let $Y(x)$ be a small difference between two nearby solutions, $Y(x) \equiv y(x) - y_0(x)$, where $y_0(x)$ and $y(x)$ are solutions of PII.
- To the leading order, $Y(x)$ satisfies a linear differential equation,

$$Y''(x) \sim \left[6y_0^2(x) + x\right]Y(x) \sim -2xY(x), \quad x \to -\infty.$$
Fluctuations about the asymptotes

- Let $Y(x)$ be a small difference between two nearby solutions, $Y(x) \equiv y(x) - y_0(x)$, where $y_0(x)$ and $y(x)$ are solutions of PII.
- To the leading order, $Y(x)$ satisfies a linear differential equation,

$$Y''(x) \sim \left[6y_0^2(x) + x\right] Y(x) \sim -2x Y(x), \quad x \to -\infty.$$

- Unstable fluctuations about each asymptote,

$$Y(x) \sim D_1 \exp \left[\frac{1}{3} (-2x)^{3/2}\right] + D_2 \exp \left[-\frac{1}{3} (-2x)^{3/2}\right].$$
Fluctuations about the asymptotes

- Let $Y(x)$ be a small difference between two nearby solutions, $Y(x) \equiv y(x) - y_0(x)$, where $y_0(x)$ and $y(x)$ are solutions of PII.
- To the leading order, $Y(x)$ satisfies a linear differential equation,

\[Y''(x) \sim \left[6y_0^2(x) + x \right] Y(x) \sim -2xY(x), \quad x \to -\infty. \]

- Unstable fluctuations about each asymptote,

\[Y(x) \sim D_1 \exp \left[\frac{1}{3} (-2x)^{\frac{3}{2}} \right] + D_2 \exp \left[-\frac{1}{3} (-2x)^{\frac{3}{2}} \right]. \]

- Nonlinear eigenvalue problems: Choose initial conditions such that $D_1 = 0$.
Different types of solutions

- Two examples of eigenfunctions/separatrix solutions:

\[y''(x) = 2y^3(x) + xy(x) + \alpha \]

Two examples of other solutions:
Different types of solutions

- Two examples of eigenfunctions/separatrix solutions:

- Two examples of other solutions:
\(\mathcal{PT} \)-symmetric Hamiltonians

- \(\mathcal{PT} \)-symmetric Hamiltonian\(^\ddagger\), \(\hat{H} = \frac{1}{2}\hat{p}^2 + g\hat{x}^2 \text{i} \hat{x}^\varepsilon. \)

\(\mathcal{PT} \)-symmetric Hamiltonians

- \(\mathcal{PT} \)-symmetric Hamiltonian\(^\dagger\), \(\hat{H} = \frac{1}{2} \hat{p}^2 + g \hat{x}^{2k} (i \hat{x})^\epsilon \).
- WKB approximation to the \(n \)th eigenvalues,

\[
E_n \sim \frac{1}{2} (2g)^{2k+\epsilon+2} \left[\frac{n \sqrt{\pi} \Gamma \left(\frac{3}{2} + \frac{1}{2k+\epsilon} \right)}{\sin \left(\frac{k \pi}{2k+\epsilon} \right) \Gamma \left(1 + \frac{1}{2k+\epsilon} \right)} \right]^{\frac{2(2k+\epsilon)}{2k+\epsilon+2}}, \quad n \to \infty.
\]

\mathcal{PT}-symmetric Hamiltonians

- \mathcal{PT}-symmetric Hamiltonian‡, $\hat{H} = \frac{1}{2} \hat{p}^2 + g \hat{x}^{2k}(i\hat{x})^\epsilon$.
- WKB approximation to the nth eigenvalues,

$$E_n \sim \frac{1}{2} (2g)^{\frac{2}{2k+\epsilon+2}} \left[\frac{n\sqrt{\pi} \Gamma \left(\frac{3}{2} + \frac{1}{2k+\epsilon} \right)}{\sin \left(\frac{k\pi}{2k+\epsilon} \right) \Gamma \left(1 + \frac{1}{2k+\epsilon} \right)} \right]^{\frac{2(2k+\epsilon)}{2k+\epsilon+2}}, \quad n \to \infty.$$

- For example,

 1. $H^{(1)} = \frac{1}{2} \hat{p}^2 + 2i\hat{x}^3$, $E_n^{(1)} \sim 2 \left[n\sqrt{3\pi} \frac{\Gamma(-\frac{1}{6})}{\Gamma(\frac{1}{3})} \right]^\frac{6}{5}$,

 2. $H^{(2)} = \frac{1}{2} \hat{p}^2 - \frac{1}{2} \hat{x}^4$, $E_n^{(2)} \sim \frac{1}{2} \left[3n\sqrt{2\pi} \frac{\Gamma(\frac{3}{2})}{\Gamma(\frac{1}{4})} \right]^\frac{4}{3}$,

 3. $H^{(3)} = \frac{1}{2} \hat{p}^2 + \frac{1}{2} \hat{x}^4$, $E_n^{(3)} \sim \frac{1}{2} \left[3n\sqrt{\pi} \frac{\Gamma(\frac{3}{2})}{\Gamma(\frac{1}{4})} \right]^\frac{4}{3}$.

Is the \mathcal{PT} symmetry hidden in Painlevé transcendents?

- Multiply $y'(x)$ on PI or PII and then integrate over x:

$$\frac{1}{2} [y'(x)]^2 - 2y^3(x) = \frac{1}{2} [y'(0)]^2 - 2y^3(0) + \int_0^x ds \, s y'(s);$$

$$\frac{1}{2} [y'(x)]^2 - \frac{1}{2} y^4(x) = \frac{1}{2} [y'(0)]^2 - \frac{1}{2} y^4(0) + \int_0^x ds \, s y(s) y'(s).$$

Is the \mathcal{PT} symmetry hidden in Painlevé transcendents?

- Multiply $y'(x)$ on PI or PII and then integrate over x:

\[
\frac{1}{2} \left[y'(x) \right]^2 - 2y^3(x) = \frac{1}{2} \left[y'(0) \right]^2 - 2y^3(0) + \int_0^x ds \, sy'(s);
\]

\[
\frac{1}{2} \left[y'(x) \right]^2 - \frac{1}{2}y^4(x) = \frac{1}{2} \left[y'(0) \right]^2 - \frac{1}{2}y^4(0) + \int_0^x ds \, sy(s)y'(s).
\]

- If $\int ds \cdots$ is negligible, and rotate x in the complex plane, we may have:\

\[E^{(1)}_n \sim \frac{1}{2} \left[y'(0) \right]^2 - 2y^3(0),\]

\[E^{(2)}_n \sim \frac{1}{2} \left[y'(0) \right]^2 - \frac{1}{2}y^4(0),\]

\[E^{(3)}_n \sim \frac{1}{2} \left[y'(0) \right]^2 + \frac{1}{2}y^4(0).\]

\[\S\text{Bender & Komijani, J.Phys.A (2015)}\]
Painlevé transcendents are \mathcal{PT}-symmetric!

Painlevé I

- $y_n'(0) \sim \sqrt{2E_n^{(1)}} \sim 2 \left[n \sqrt{3\pi} \frac{\Gamma(\frac{11}{6})}{\Gamma(\frac{1}{3})} \right]^{\frac{3}{5}} \approx 2.092\,146\,74 \, n^{\frac{3}{5}}$.

- $y_n(0) \sim -\left[\frac{1}{2} E_n^{(1)} \right]^{\frac{1}{3}} \sim - \left[n \sqrt{3\pi} \frac{\Gamma(\frac{11}{6})}{\Gamma(\frac{1}{3})} \right]^{\frac{2}{5}} \approx -1.030\,484\,4 \, n^{\frac{2}{5}}$.
Painlevé transcendents are \mathcal{PT}-symmetric!

Painlevé I

- $y'_n(0) \sim \sqrt{2E_n^{(1)}} \sim 2 \left[n\sqrt{3\pi} \frac{\Gamma(\frac{11}{6})}{\Gamma(\frac{1}{3})} \right]^{\frac{3}{5}} \approx 2.092\,146\,74\,n^{\frac{3}{5}}$

- $y_n(0) \sim \left[\frac{1}{2} E_n^{(1)} \right]^{\frac{1}{3}} \sim -\left[n\sqrt{3\pi} \frac{\Gamma(\frac{11}{6})}{\Gamma(\frac{1}{3})} \right]^{\frac{2}{5}} \approx -1.030\,484\,4\,n^{\frac{2}{5}}$

Painlevé II

- $y'_n(0) \sim \sqrt{2E_n^{(2)}} \sim \left[3n\sqrt{2\pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})} \right]^{\frac{2}{3}} \approx 1.862\,412\,8\,n^{\frac{2}{3}}$

- $y_n(0) \sim \left[2E_n^{(3)} \right]^{\frac{1}{4}} \sim \left[3n\sqrt{\pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})} \right]^{\frac{1}{3}} \approx 1.215\,811\,65\,n^{\frac{1}{3}}$
Outline

1. Linear Eigenvalue Problems

2. Painlevé Transcendental Equations I and II

3. Super Painlevé Equations
 - A new class of nonlinear differential equations
 - “Regular” eigenvalue problems
 - “Peculiar” eigenvalue problems
 - “Bizarre” eigenvalue problems
 - General super Painlevé equations

4. Conclusion and Future Work
Super Painlevé equations

- \(SP(M,N) \):

\[
y''(x) = \frac{2(M + 1)}{(M - 1)^2} y^M(x) + xy^N(x).
\]
Super Painlevé equations

- **SP(M,N):**

 \[
 y''(x) = \frac{2(M + 1)}{(M - 1)^2} y^M(x) + xy^N(x).
 \]

- Movable singularities:

 \[
 y(x) = \begin{cases}
 \frac{1}{(x - x_0)^{\frac{2}{M-1}}} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^{\frac{n}{M-1}} \right], & M = 2k; \\
 \pm \frac{1}{(x - x_0)^{\frac{1}{k}}} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^{\frac{n}{k}} \right], & M = 2k + 1.
 \end{cases}
 \]

 For even \(M = 2k \), \(a_2(M+1) \) is arbitrary.
 For odd \(M = 2k + 1 \), \(a_2(k+1) \) is arbitrary. Only odd \(k \) may have real eigensolutions. SP(3,1) is PII with \(\alpha = 0 \).
Super Painlevé equations

- **SP(M,N):**
 \[y''(x) = \frac{2(M + 1)}{(M - 1)^2} y^M(x) + x y^N(x). \]

- **Movable singularities:**
 \[y(x) = \begin{cases}
 \frac{1}{(x - x_0)^{M-1}} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^{\frac{n}{M-1}} \right], & M = 2k; \\
 \pm \frac{1}{(x - x_0)^{\frac{1}{k}}} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^{\frac{n}{k}} \right], & M = 2k + 1.
\]

- For even \(M = 2k \), \(a_{2(M+1)} \) is arbitrary. SP(2,0) is PI.
Super Painlevé equations

- **SP(M,N):**

\[
y''(x) = \frac{2(M + 1)}{(M - 1)^2} y^M(x) + xy^N(x).
\]

- **Movable singularities:**

\[
y(x) = \frac{1}{(x - x_0)^{\frac{M-1}{2}}} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^{\frac{n}{M-1}}\right], \quad M = 2k;
\]

\[
y(x) = \pm \frac{1}{(x - x_0)^{\frac{1}{k}}} \left[1 + \sum_{n=1}^{\infty} a_n (x - x_0)^{\frac{n}{k}}\right], \quad M = 2k + 1.
\]

- For even \(M = 2k \), \(a_{2(M+1)} \) is arbitrary. SP(2,0) is PI.
- For odd \(M = 2k + 1 \), \(a_{2(k+1)} \) is arbitrary. Only odd \(k \) may have real eigensolutions. SP(3,1) is PII with \(\alpha = 0 \).
Super Painlevé Equations

“Regular” eigenvalue problems

\[SP(4,0): \quad y''(x) = \frac{10}{9} y^4(x) + x \]

\[y'_n(0) \sim 1.1102n^{\frac{5}{11}} \]

\[y'_n(0) \sim -1.11n^{\frac{5}{11}} \]
SP(4,0): $y''(x) = \frac{10}{9} y^4(x) + x$

- $y'_n(0) \sim 1.1102n^{\frac{5}{11}}$
- $y'_n(0) \sim -1.11n^{\frac{5}{11}}$
- $y_n(0) \sim 1.80547n^{\frac{2}{11}}$
- $y_n(0) \sim -1.226n^{\frac{2}{11}}$
Super Painlevé Equations

“Regular” eigenvalue problems

$\text{SP}(4,1): \quad y''(x) = \frac{10}{9} y^4(x) + x y(x)$

$y_n'(0) \sim 2.1336 n^{\frac{5}{9}}$

$y_n'(0) \sim -2.1336 n^{\frac{5}{9}}$
SP(4,1): \(y''(x) = \frac{10}{9} y^4(x) + x y(x) \)

- \(y'_n(0) \sim 2.1336n^{\frac{5}{9}} \)
- \(y'_n(0) \sim -2.1336n^{\frac{5}{9}} \)

No solutions for \(y_n(0) > 0 \)

- \(y_n(0) \sim -1.59255n^{\frac{2}{9}} \)
Super Painlevé Equations

“Regular” eigenvalue problems

SP(4,2): \(y''(x) = \frac{10}{9} y^4(x) + xy^2(x) \)

\[
\begin{align*}
 y'_n(0) & \sim 2.9996n^{\frac{5}{7}} \\
 y'_n(0) & \sim -2.9996n^{\frac{5}{7}}
\end{align*}
\]
Super Painlevé Equations

"Regular" eigenvalue problems

SP(4,2): \(\ddot{y}(x) = \frac{10}{9} y^4(x) + xy^2(x) \)

\[
\begin{align*}
 y'_n(0) & \sim 2.9996n^{\frac{5}{7}} \\
 y'_n(0) & \sim -2.9996n^{\frac{5}{7}} \\
 y_n(0) & \sim 1.098102n^{\frac{2}{7}} \\
 y_n(0) & \sim -1.82502n^{\frac{2}{7}}
\end{align*}
\]
Super Painlevé Equations

“Regular” eigenvalue problems

SP(M,M-m): \(y''(x) = A \left[y^M(x) + Bxy^{M-m}(x) \right] \)

- Scaling: \(y = \alpha Y, \quad x = aX. \)
Super Painlevé Equations

“Regular” eigenvalue problems

\[\text{SP}(M,M-m): \quad y''(x) = A \left[y^M(x) + B x y^{M-m}(x) \right] \]

 Scaling: \(y = \alpha Y, \ x = aX. \)
\[Y' = a\alpha^{-1} y', \ Y'' = a^2\alpha^{M-1} A \left[Y^M + a\alpha^{-m} B X Y^{M-m} \right]. \]
Super Painlevé Equations

SP(M,M-m): \[y''(x) = A \left[y^M(x) + Bxy^{M-m}(x) \right] \]

- **Scaling:** \(y = \alpha Y, \ x = aX \).

- \(Y' = a\alpha^{-1}y', \ Y'' = a^2\alpha^{M-1}A \left[Y^M + a\alpha^{-m}BXY^{M-m} \right] \).

- If \(y'_{\nu}(0) = C_nA^{\mu}B^{\nu} \), then

\[
Y'_{\nu}(0) = C_n \left(a^2\alpha^{M-1}A \right)^{\mu} \left(a\alpha^{-m}B \right)^{\nu} = a^{2\mu+\nu}\alpha^{(M-1)\mu-m\nu}y'_{\nu}(0).
\]
Super Painlevé Equations

"Regular" eigenvalue problems

\[\text{SP}(M,M-m): \ y''(x) = A \left[y^M(x) + Bx y^{M-m}(x) \right] \]

- Scaling: \(y = \alpha Y, \ x = aX \).
- \(Y' = a\alpha^{-1}y', \ Y'' = a^2\alpha^{M-1}A \left[Y^M + a\alpha^{-m}BXY^{M-m} \right] \).
- If \(y'_n(0) = C_n A^\mu B^\nu \), then
 \[
 Y'_n(0) = C_n \left(a^2\alpha^{M-1}A \right)^\mu \left(a\alpha^{-m}B \right)^\nu = a^{2\mu+\nu} \alpha^{(M-1)\mu-m\nu} y'_n(0).
 \]

\[
\begin{align*}
2\mu + \nu &= 1 \\
(M-1)\mu - m\nu &= -1 \\
\end{align*}
\]

\[
\begin{align*}
\mu &= \frac{m-1}{M+2m-1} \\
\nu &= \frac{M+1}{M+2m-1}
\end{align*}
\]
Super Painlevé Equations

“Regular” eigenvalue problems

\[\text{SP}(M, M-m): \quad y''(x) = A \left[y^M(x) + B x y^{M-m}(x) \right] \]

- Scaling: \(y = \alpha Y, \quad x = aX \).
- \(Y' = a\alpha^{-1} y', \quad Y'' = a^2 \alpha^{M-1} A \left[Y^M + a\alpha^{-m} B X Y^{M-m} \right] \).
- If \(y'_n(0) = C_n A^\mu B^\nu \), then
 \[
 Y'_n(0) = C_n \left(a^2 \alpha^{M-1} A \right)^\mu \left(a\alpha^{-m} B \right)^\nu = a^{2\mu+\nu} \alpha^{(M-1)\mu-m\nu} y'_n(0).
 \]

\[
\begin{align*}
2\mu + \nu &= 1 \\
(M - 1)\mu - m\nu &= -1
\end{align*}
\]

\[
\Rightarrow \quad \begin{cases}
\mu = \frac{m-1}{M+2m-1} \\
\nu = \frac{M+1}{M+2m-1}
\end{cases}
\]

- We found numerically that \(C_n \sim C_n^{\frac{M+1}{M+2m-1}}, \quad n \to \infty \).
Super Painlevé Equations

```
SP(M,M-m): y''(x) = A [y^M(x) + Bx y^{M-m}(x)]
```

- Scaling: \(y = \alpha Y, \ x = aX. \)
- \(Y' = a\alpha^{-1}y', \ Y'' = a^2 \alpha^{M-1} A \left[Y^M + a\alpha^{-m} BXY^{M-m} \right]. \)
- If \(y'_n(0) = C_n A^\mu B^\nu, \) then
 \[
 Y'_n(0) = C_n \left(a^2 \alpha^{M-1} A \right)^\mu \left(a\alpha^{-m} B \right)^\nu = a^{2\mu+\nu} \alpha^{(M-1)\mu-m\nu} y'_n(0).
 \]

\[
\begin{aligned}
2\mu + \nu &= 1 \\
(M-1)\mu - m\nu &= -1
\end{aligned}
\Rightarrow \begin{cases}
\mu &= \frac{m-1}{M+2m-1} \\
\nu &= \frac{M+1}{M+2m-1}
\end{cases}
\]

- We found numerically that \(C_n \sim Cn^{\frac{M+1}{M+2m-1}}, \ n \rightarrow \infty. \)
- Put them all together, we get
 \[
 y'_n(0) \sim CA^{\frac{m-1}{M+2m-1}} (Bn)^{\frac{M+1}{M+2m-1}}.
 \]
SP(M,M-m): \(y''(x) = A \left[y^M(x) + Bxy^{M-m}(x) \right] \)

- **Scaling:** \(y = \alpha Y, \ x = aX. \)

 \(Y' = a\alpha^{-1}y', \ Y'' = a^2\alpha^{M-1}A \left[Y^M + a\alpha^{-m}BXY^{M-m} \right] \).

- If \(y'_n(0) = C_n A^\mu B^\nu \), then

 \[Y'_n(0) = C_n \left(a^2\alpha^{M-1}A \right)^\mu \left(a\alpha^{-m}B \right)^\nu = a^{2\mu+\nu} \alpha^{(M-1)\mu-m\nu} y'_n(0). \]

 \[
 \begin{cases}
 2\mu + \nu &= 1 \\
 (M - 1)\mu - m\nu &= -1
 \end{cases}
 \Rightarrow \begin{cases}
 \mu &= \frac{m-1}{M+2m-1} \\
 \nu &= \frac{M+1}{M+2m-1}
 \end{cases}
 \]

- We found numerically that \(C_n \sim Cn^{\frac{M+1}{M+2m-1}}, \ n \to \infty. \)

- Put them all together, we get

 \[y'_n(0) \sim CA^{\frac{m-1}{M+2m-1}}(Bn)^{\frac{M+1}{M+2m-1}}. \]

- Similarly,

 \[y_n(0) \sim DA^{-\frac{1}{M+2m-1}}(Bn)^{\frac{2}{M+2m-1}}. \]
Super Painlevé Equations

“Peculiar” eigenvalue problems

\[SP(4,2): \quad y''(x) = \frac{10}{9} y^4(x) + x y^2(x) \]

- There are rich features for super Painlevé equations.
Super Painlevé Equations

“Peculiar” eigenvalue problems

$\text{SP}(4,2): \ y''(x) = \frac{10}{9} y^4(x) + xy^2(x)$

- There are rich features for super Painlevé equations.
- Infinite “peculiar” eigensolutions near every “regular” eigensolution.
Super Painlevé Equations

There are rich features for super Painlevé equations.

- Infinite “peculiar” eigensolutions near every “regular” eigensolution.

\[SP(4,2): \quad y''(x) = \frac{10}{9} y^4(x) + x y^2(x) \]

\[c_n = 1.427047 - \lambda_n \]
Super Painlevé Equations

“Peculiar” eigenvalue problems

SP(4,2):
\[y''(x) = \frac{10}{9} y^4(x) + x y^2(x) \]

- There are rich features for super Painlevé equations.
- Infinite “peculiar” eigensolutions near every “regular” eigensolution.

Graphs

- **Graph 1:**
 - Function plot showing oscillations and asymptotic behavior.

- **Graph 2:**
 - Plot of eigenvalues \(\lambda_n \) vs. \(n \)

- **Equations:**
 \[c_n = 1.427047 - \lambda_n \]
 \[\lambda_n \sim 4.1789 \times 10^{-4.02244(n-1)} \]
SP(6,3): \(y''(x) = \frac{14}{25} y^6(x) + x y^3(x) \)

For some super Painlevé equations, there is yet another type of eigensolutions. For example,
Super Painlevé Equations "Bizarre" eigenvalue problems

\[SP(6,3): \quad y''(x) = \frac{14}{25} y^6(x) + xy^3(x) \]

For some super Painlevé equations, there is yet another type of eigensolutions. For example,

SP(6,3) in the positive \(x \) domain.
For some super Painlevé equations, there is yet another type of eigensolutions. For example,

\[\text{SP}(6,3): \quad y''(x) = \frac{14}{25} y^6(x) + x y^3(x) \]

SP(6,3) in the positive \(x \) domain. The eigenvalues seem not following any power law or exponential law for large \(n \).
More super Painlevé equations

- General form of SP equation

\[y''(x) = Ay^M(x) + xP[y(x)] + Q[y(x)], \]
General form of SP equation

\[y''(x) = Ay^M(x) + xP[y(x)] + Q[y(x)], \]

where

\[P[y] = C_{M-2}y^{M-2} + C_{M-3}y^{M-3} + \cdots + C_1y + C_0, \]

\[Q[y] = D_{M-2}y^{M-2} + D_{M-3}y^{M-3} + \cdots + D_1y + D_0. \]
More super Painlevé equations

- General form of SP equation

\[y''(x) = Ay^M(x) + xP[y(x)] + Q[y(x)], \]

- where

\[P[y] = C_{M-2}y^{M-2} + C_{M-3}y^{M-3} + \cdots + C_1y + C_0, \]

\[Q[y] = D_{M-2}y^{M-2} + D_{M-3}y^{M-3} + \cdots + D_1y + D_0. \]

- If \(C_n \neq 0 \), it can always be scaled to 1 and shift \(x \) such that \(D_n = 0 \).
More super Painlevé equations

- General form of SP equation

\[y''(x) = Ay^M(x) + xP[y(x)] + Q[y(x)], \]

- where

\[P[y] = C_{M-2}y^{M-2} + C_{M-3}y^{M-3} + \cdots + C_1y + C_0, \]

\[Q[y] = D_{M-2}y^{M-2} + D_{M-3}y^{M-3} + \cdots + D_1y + D_0. \]

- If \(C_n \neq 0 \), it can always be scaled to 1 and shift \(x \) such that \(D_n = 0 \).
- For even \(M \), \(C_n \) and \(D_n \) are arbitrary.
More super Painlevé equations

- General form of SP equation

\[y''(x) = Ay^M(x) + xP[y(x)] + Q[y(x)], \]

where

\[P[y] = C_{M-2}y^{M-2} + C_{M-3}y^{M-3} + \cdots + C_1y + C_0, \]

\[Q[y] = D_{M-2}y^{M-2} + D_{M-3}y^{M-3} + \cdots + D_1y + D_0. \]

- If \(C_n \neq 0 \), it can always be scaled to 1 and shift \(x \) such that \(D_n = 0 \).

- For even \(M \), \(C_n \) and \(D_n \) are arbitrary.

- For odd \(M \), things get complicated.
General super Painlevé equations with odd M

- **SP3:** $C_0 = 0 \Rightarrow$ general form of PII:

$$y''(x) = 2y^3(x) + xy(x) + D_0.$$
General super Painlevé equations with odd M

- **SP3**: $C_0 = 0 \Rightarrow$ general form of PII:

$$y''(x) = 2y^3(x) + xy(x) + D_0.$$

- **SP5**: $C_3 = C_1 = 0$, \Rightarrow general form of SP5:

$$y''(x) = \frac{3}{4}y^5(x) + x \left[C_2 y^2(x) + C_0 \right]$$

$$+ D_3 y^3(x) + D_2 y^2(x) + D_1 y(x) + D_0.$$
General super Painlevé equations with odd M

- **SP3**: $C_0 = 0 \Rightarrow$ general form of PII:
 \[y''(x) = 2y^3(x) + xy(x) + D_0. \]

- **SP5**: $C_3 = C_1 = 0, \Rightarrow$ general form of SP5:
 \[y''(x) = \frac{3}{4}y^5(x) + x \left[C_2y^2(x) + C_0 \right]
 + D_3y^3(x) + D_2y^2(x) + D_1y(x) + D_0. \]

- **SP7**: $C_5 = 0, C_2 = \frac{2}{5}C_4D_5$ or $C_4 = 0, C_2 = \frac{2}{5}D_4C_5$.
General super Painlevé equations with odd M

- **SP3**: $C_0 = 0 \Rightarrow$ general form of PII:
 \[
y''(x) = 2y^3(x) + xy(x) + D_0.
 \]

- **SP5**: $C_3 = C_1 = 0, \Rightarrow$ general form of SP5:
 \[
y''(x) = \frac{3}{4}y^5(x) + x \left[C_2y^2(x) + C_0 \right] + D_3y^3(x) + D_2y^2(x) + D_1y(x) + D_0.
 \]

- **SP7**: $C_5 = 0, C_2 = \frac{2}{5}C_4D_5$ or $C_4 = 0, C_2 = \frac{2}{5}D_4C_5$.

- **SP9**: $C_6 = C_7 = 0, C_3 = \frac{5}{12}C_5D_7$.

General super Painlevé equations with odd M

- **SP3:** $C_0 = 0 \Rightarrow$ general form of PII:
 \[y''(x) = 2y^3(x) + xy(x) + D_0. \]

- **SP5:** $C_3 = C_1 = 0$, \Rightarrow general form of SP5:
 \[y''(x) = \frac{3}{4}y^5(x) + x \left[C_2y^2(x) + C_0 \right] + D_3y^3(x) + D_2y^2(x) + D_1y(x) + D_0. \]

- **SP7:** $C_5 = 0$, $C_2 = \frac{2}{5}C_4D_5$ or $C_4 = 0$, $C_2 = \frac{2}{5}D_4C_5$.

- **SP9:** $C_6 = C_7 = 0$, $C_3 = \frac{5}{12}C_5D_7$.

- **SP11:** there are three cases.
Outline

1. Linear Eigenvalue Problems
2. Painlevé Transcendental Equations I and II
3. Super Painlevé Equations
4. Conclusion and Future Work
Concluding remarks

- Nonlinear eigenvalue problems are linked to \mathcal{PT}-symmetric Hamiltonians.
Concluding remarks

- Nonlinear eigenvalue problems are linked to \mathcal{PT}-symmetric Hamiltonians.
- Painlevé transcendents are generalized to an infinite class of nonlinear equations with only algebraic movable singularities.
Concluding remarks

- Nonlinear eigenvalue problems are linked to \mathcal{PT}-symmetric Hamiltonians.
- Painlevé transcendents are generalized to an infinite class of nonlinear equations with only algebraic movable singularities.
- Separatrix solutions are found to satisfy discrete initial conditions, \Rightarrow eigenvalues.
Concluding remarks

- Nonlinear eigenvalue problems are linked to \mathcal{PT}-symmetric Hamiltonians.
- Painlevé transcendents are generalized to an infinite class of nonlinear equations with only algebraic movable singularities.
- Separatrix solutions are found to satisfy discrete initial conditions, \Rightarrow eigenvalues.
- Two new types of nonlinear eigenvalue problems are proposed.
Concluding remarks

- Nonlinear eigenvalue problems are linked to \mathcal{PT}-symmetric Hamiltonians.
- Painlevé transcendents are generalized to an infinite class of nonlinear equations with only algebraic movable singularities.
- Separatrix solutions are found to satisfy discrete initial conditions, \Rightarrow eigenvalues.
- Two new types of nonlinear eigenvalue problems are proposed.
- A lot more to do · · ·
 - How to derive the prefactors in the large n behaviors in the “regular” eigenvalues of the super Painlevé equations?
 - How to derive the exponential behavior of the “peculiar” eigenvalues?
 - What’s the large n behavior for the “bizarre” eigenvalues?
 - Any other significance of these equations?