Dr. Vladimir Lotoreichik

Department of Theoretical Physics

Nuclear Physics Institute

Academy of Sciences of the Czech Republic


Submitted

  • Biagio Cassano and Vladimir Lotoreichik
    Self-adjointness for the MIT bag model on an unbounded cone
    submitted. arXiv.

  • David Krejcirik and Vladimir Lotoreichik
    Quasi-conical domains with embedded eigenvalues
    submitted. arXiv.

  • David Krejcirik, Vladimir Lotoreichik, and Tuyen Vu
    Reverse isoperimetric inequality for the lowest Robin eigenvalue of a triangle
    submitted. arXiv.

  • Pavel Exner, Sylwia Kondej, and Vladimir Lotoreichik
    Bound states of weakly deformed soft waveguides
    submitted. arXiv.

Refereed publications

  1. Biagio Cassano, Vladimir Lotoreichik, Albert Mas, and Matej Tusek
    General δ-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation
    to appear in Rev. Mat. Iberoam. arXiv.

  2. Jussi Behrndt, Vladimir Lotoreichik, and Peter Schlosser
    Schrödinger operators with δ-potentials supported on unbounded Lipschitz hypersurfaces
    to appear in Oper. Theory. Adv. Appl. arXiv.

  3. Dale Frymark and Vladimir Lotoreichik
    Self-adjointness of the 2D Dirac operator with singular interactions supported on star graphs
    to appear in Ann. Henri Poincaré. arXiv.

  4. Jussi Behrndt, Markus Holzmann, Vladimir Lotoreichik, and Georgi Raikov
    The fate of Landau levels under δ-interactions
    to appear in J. Spectral Theory. arXiv.

  5. Vladimir Lotoreichik
    An isoperimetric inequality for the perturbed Robin bi-Laplacian in a planar exterior domain
    J. Differential Equations 345 (2023), 285–313. arXiv.

  6. Ayman Kachmar and Vladimir Lotoreichik
    On the isoperimetric inequality for the magnetic Robin Laplacian with negative boundary parameter
    J. Geom. Anal. 32 (2022), 182. arXiv. Correction

  7. Magda Khalile and Vladimir Lotoreichik
    Spectral isoperimetric inequalities for Robin Laplacians on 2-manifolds and unbounded cones
    J. Spectr. Theory. 12 (2022), 683–706. arXiv.

  8. Pavel Exner and Vladimir Lotoreichik
    Spectral optimization for Robin Laplacian on domains admitting parallel coordinates
    Math. Nachr. 295 (2022), 1163–1173. arXiv.

  9. Monique Dauge, Michal Jex, and Vladimir Lotoreichik
    Trace Hardy inequality for the Euclidean space with a cut and its applications
    J. Math. Anal. Appl. 500 (2021), 125124. arXiv.

  10. Pavel Exner and Vladimir Lotoreichik
    Optimization of the lowest eigenvalue of a soft quantum ring
    Lett. Math. Phys. 111 (2021), 28. arXiv.

  11. Vladimir Lotoreichik
    Spectral isoperimetric inequality for the δ'-interaction on a contour
    Michelangeli A. (eds) Mathematical Challenges of Zero-Range Physics. Springer INdAM Series, vol 42. Springer, Cham, 2021. arXiv.

  12. Vladimir Lotoreichik and Alessandro Michelangeli
    Faber-Krahn inequalities for Schrödinger operators with point and with Coulomb interactions
    J. Math. Phys. 62 (2021), 012105. arXiv.

  13. Pedro Antunes, Rafael Benguria, Vladimir Lotoreichik, and Thomas Ourmieres-Bonafos
    A variational formulation for Dirac operators in bounded domains. Applications to spectral geometric inequalities
    Commun. Math. Phys. 386 (2021), 781–818. arXiv.

  14. David Krejcirik, Vladimir Lotoreichik, Konstantin Pankrashkin, and Matej Tusek
    Spectral analysis of the multi-dimensional diffusion operator with random jumps from the boundary
    J. Evol. Equ. 21 (2021), 1651–1675. arXiv.

  15. Jussi Behrndt, Pavel Exner, Markus Holzmann and Vladimir Lotoreichik
    The Landau Hamiltonian with δ-potentials supported on curves
    Rev. Math. Phys. 32 (2020), 2050010. arXiv.

  16. Biagio Cassano and Vladimir Lotoreichik
    Self-adjoint extensions of the two-valley Dirac operator with discontinuous infinite mass boundary conditions
    Operators and Matrices 14 (2020), 667–678. arXiv.

  17. David Krejcirik and Vladimir Lotoreichik
    Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions
    Potential Anal. 52 (2020), 601–614. arXiv.

  18. Pavel Exner and Vladimir Lotoreichik
    Spectral asymptotics of the Dirichlet Laplacian on a generalized parabolic layer
    Integral Equations and Operator Theory 92 (2020), 15. arXiv.

  19. Jussi Behrndt, Pavel Exner, Markus Holzmann, and Vladimir Lotoreichik
    On Dirac operators in ℝ3 with electrostatic and Lorentz scalar δ-shell interactions
    Quantum Stud. Math. Found. 6 (2019), 295–314.

  20. Vladimir Lotoreichik and Thomas Ourmières-Bonafos
    A sharp upper bound on the spectral gap for graphene quantum dots
    Math. Phys. Anal. Geom. 22 (2019), 13. arXiv.

  21. Vladimir Lotoreichik
    Spectral isoperimetric inequalities for singular interactions on open arcs
    Appl. Anal. 98 (2019), 1451–1460. arXiv.

  22. David Krejcirik, Vladimir Lotoreichik, and Thomas Ourmières-Bonafos
    Spectral transitions for Aharonov-Bohm Laplacians on conical layers
    Proc. Roy. Soc. Edinburgh Sect. A. 149 (2019), 1663–1687. arXiv.

  23. David Krejcirik, Vladimir Lotoreichik, and Miloslav Znojil
    The minimally anisotropic metric operator in quasi-Hermitian quantum mechanics
    Proc. R. Soc. A. 474 (2018), 0264. arXiv.

  24. Pavel Exner, Vladimir Lotoreichik, and Axel Perez-Obiol
    On the bound states of magnetic Laplacians on wedges
    Rep. Math. Phys. 82 (2018), 161–185. arXiv.

  25. Markus Holzmann and Vladimir Lotoreichik
    Spectral analysis of photonic crystals made of thin rods
    Asymptotic Anal. 110 (2018), 83–112. arXiv.

  26. Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder
    Spectral enclosures for non-self-adjoint extensions of symmetric operators
    J. Funct. Anal. 275 (2018), 1808–1888

  27. Jussi Behrndt, Pavel Exner, Markus Holzmann and Vladimir Lotoreichik
    On the spectral properties of Dirac operators with electrostatic δ-shell interactions
    J. Math. Pures Appl. 111 (2018), 47–78. arXiv.

  28. Pavel Exner, Sylwia Kondej, and Vladimir Lotoreichik
    Asymptotics of the bound state induced by δ-interaction supported on a weakly deformed plane
    J. Math. Phys. 59 (2018), 013501 (featured article). arXiv.

  29. David Krejcirik and Vladimir Lotoreichik
    Optimisation of the lowest Robin eigenvalue in the exterior of a compact set
    J. Convex Anal. 25 (2018), 319–337. arXiv.

  30. Jiri Lipovsky and Vladimir Lotoreichik
    Asymptotics of resonances induced by point interactions
    Acta Phys. Pol. A. 132 (2017), 1677–1682. arXiv.

  31. Jussi Behrndt, Pavel Exner, Markus Holzmann and Vladimir Lotoreichik
    Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces
    Math. Nachr. 290 (2017), 1215–1248. arXiv.

  32. Jussi Behrndt, Rupert L. Frank, Christian Kühn, Vladimir Lotoreichik and Jonathan Rohleder
    Spectral theory for Schrödinger operators with δ-interactions supported on curves in ℝ³
    Ann. Henri Poincaré 18 (2017), 1305–1347. arXiv.

  33. Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder
    Quasi boundary triples and semibounded self-adjoint extensions
    Proc. Roy. Soc. Edinburgh Sect. A. 147 (2017), 895–916. arXiv.

  34. Vladimir Lotoreichik and Jonathan Rohleder
    Eigenvalue inequalities for the Laplacian with mixed boundary conditions
    J. Differential Equations 263 (2017), 491–508. arXiv.

  35. Pavel Exner and Vladimir Lotoreichik
    A spectral isoperimetric inequality for cones
    Lett. Math. Phys. 107 (2017), 717–732. arXiv.

  36. Pavel Exner, Vladimir Lotoreichik, and Miloš Tater
    Spectral and resonance properties of the Smilansky Hamiltonian
    Phys. Lett. A. 381 (2017), 756–761. arXiv.

  37. Vladimir Lotoreichik and Petr Siegl
    Spectra of definite type in waveguide models
    Proc. Amer. Math. Soc. 145 (2017), 1231–1246. arXiv.

  38. Michal Jex and Vladimir Lotoreichik
    On absence of bound states for weakly attractive δ'-interactions supported on non-closed curves in ℝ²
    J. Math. Phys. 57 (2016), 022101. arXiv.

  39. Vladimir Lotoreichik and Thomas Ourmières-Bonafos
    On the bound states of Schrödinger operators with δ-interactions on conical surfaces
    Comm. Partial Differential Equations 41 (2016), 999–1028. arXiv.

  40. Jussi Behrndt, Gerd Grubb, Matthias Langer, and Vladimir Lotoreichik
    Spectral asymptotics for resolvent differences of elliptic operators with δ and δ'-interactions on hypersurfaces
    J. Spectr. Theory. 5 (2015), 697–729. arXiv.

  41. Vladimir Lotoreichik and Jonathan Rohlelder
    An eigenvalue inequality for Schrödinger operators with δ and δ′-interactions supported on hypersurfaces
    Oper. Theory Adv. Appl. 247 (2015), 173–184. arXiv.

  42. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Schrödinger operators with δ-interactions supported on conical surfaces
    J. Phys. A: Math. Theor. 47 (2014), 355202 (16pp). arXiv. (Open Access).

  43. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Schrödinger operators with δ and δ′-interactions on Lipschitz surfaces and chromatic numbers of associated partitions
    Rev. Math. Phys. 26 (2014), 1450015 (43pp). arXiv.

  44. Vladimir Lotoreichik
    Lower bounds on the norms of extension operators for Lipschitz domains
    Operators and Matrices 8 (2014), 573–592. arXiv.

  45. Sylwia Kondej and Vladimir Lotoreichik
    Weakly coupled bound state of 2-D Schrödinger operator with potential-measure
    J. Math. Anal. Appl. 420 (2014), 1416–1438. arXiv. (Open Access).

  46. Vladimir Lotoreichik and Sergey Simonov
    Spectral analysis of the half-line Kronig-Penney model with Wigner-von Neumann perturbations
    Rep. Math. Phys. 74 (2014), 45–72. arXiv.

  47. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Trace formulae and singular values of resolvent power differences of self-adjoint elliptic operators
    J. London. Math. Soc. (2) 88 (2013), 319–337. arXiv.

  48. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Spectral estimates for resolvent differences of self-adjoint elliptic operators
    Integral Equations and Operator Theory 77 (2013), 1–37. arXiv.

  49. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Schrödinger operators with δ and δ'-potentials supported on hypersurfaces
    Ann. Henri Poincaré 14 (2013), 385–423. arXiv.

  50. Vladimir Lotoreichik and Jonathan Rohleder
    Schatten-von Neumann estimates for resolvent differences of Robin Laplacians on a half-space
    Oper. Theory Adv. Appl. 221 (2012), 471–486. arXiv.

  51. Vladimir Lotoreichik
    Singular continuous spectrum of half-line Schrödinger operators with point interactions on a sparse set
    Opuscula Math. 31 (2011), 615–628. (Open Access).

  52. Jussi Behrndt, Matthias Langer, Igor Lobanov, Vladimir Lotoreichik and Igor Yu. Popov
    A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains
    J. Math. Anal. Appl. 371 (2010), 750–758. arXiv.

  53. Igor Lobanov, Vladimir Lotoreichik, and Igor Yu. Popov
    Lower bound on the spectrum of the two-dimensional Schrödinger operator with a delta-perturbation on a curve
    Theor. Math. Phys. 162 (2010), 332–340.

Theses

Other publications

  1. Pavel Exner and Vladimir Lotoreichik
    Optimization of the lowest eigenvalue for leaky star graphs
    in Proceedings of the conference "Mathematical Results in Quantum Physics" (QMath13, Atlanta 2016; F. Bonetto, D. Borthwick, E. Harrell, M. Loss, eds.), Contemporary Mathematics, AMS, Providence, R.I. 2018; 187–196 arXiv.

  2. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Trace formulae for Schrödinger operators with singular interactions
    The Pavel Exner Anniversary Volume, EMS (2017), 129–152. arXiv.

  3. Pavel Exner, Vladimir Lotoreichik, and Miloš Tater
    On resonances and bound states of Smilansky Hamiltonian
    Nanosystems: Physics, Chemistry, Mathematics 7 (2016), 789–802. arXiv.

  4. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik,
    Boundary triples for Schrödinger operators with singular interactions on hypersurfaces,
    Nanosystems: Phys. Chem. Math. 7 (2016), 290–302.

  5. Jussi Behrndt, Markus Holzmann, and Vladimir Lotoreichik
    Convergence of 2D-Schrödinger operators with local scaled short-range interactions to a Hamiltonian with infinitely many delta-point interactions
    Proc. Appl. Math. Mech. 14 (2014), 1005-1006. (Open Access).

  6. Vladimir Lotoreichik, Hagen Neidhardt, and Igor Yu. Popov
    Point contacts and boundary triples
    Mathematical Results in Quantum Mechanics, Proceedings of the QMath12 Conference, P. Exner, W. König, and H. Neidhardt (eds), World Scientific, Singapore, 2015, pp. 283--293. arXiv.

  7. Vladimir Lotoreichik
    Note on 2D Schrödinger operators with δ-interactions on angles and crossing lines
    Nanosystems: Phys. Chem. Math. 4 (2013), 1–7. arXiv. (Open Access).

  8. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Essential spectrum of Schrödinger operators with δ-interactions on the union of compact Lipschitz hypersurfaces
    Proc. Appl. Math. Mech. (2013), 523–524. (Open Access).