Dr. Vladimir Lotoreichik

Department of Theoretical Physics

Nuclear Physics Institute

Academy of Sciences of the Czech Republic


Submitted

  • Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder
    Spectral enclosures for non-self-adjoint extensions of symmetric operators
    arXiv.

  • Pavel Exner and Vladimir Lotoreichik
    Optimization of the lowest eigenvalue for leaky star graphs
    arXiv.

  • Pavel Exner, Vladimir Lotoreichik, and Axel Perez-Obiol
    On the bound states of magnetic Laplacians on wedges
    arXiv.

  • Markus Holzmann and Vladimir Lotoreichik
    Spectral analysis of photonic crystals made of thin rods
    arXiv.

  • David Krejcirik and Vladimir Lotoreichik
    Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions
    arXiv.

Refereed publications

  1. Vladimir Lotoreichik
    Spectral isoperimetric inequalities for δ-interactions on open arcs and for the Robin Laplacian on planes with slits
    to appear in Appl. Anal. arXiv.

  2. Jussi Behrndt, Pavel Exner, Markus Holzmann and Vladimir Lotoreichik
    On the spectral properties of Dirac operators with electrostatic δ-shell interactions
    to appear in J. Math. Pures Appl. arXiv.

  3. Pavel Exner, Sylwia Kondej, and Vladimir Lotoreichik
    Asymptotics of the bound state induced by δ-interaction supported on a weakly deformed plane
    J. Math. Phys. 59 (2018), 013501. arXiv.

  4. David Krejcirik and Vladimir Lotoreichik
    Optimisation of the lowest Robin eigenvalue in the exterior of a compact set
    to appear in J. Convex Anal. arXiv.

  5. David Krejcirik, Vladimir Lotoreichik, and Thomas Ourmières-Bonafos
    Spectral transitions for Aharonov-Bohm Laplacians on conical layers
    to appear in Proc. Roy. Soc. Edinburgh Sect. A. arXiv.

  6. Jiri Lipovsky and Vladimir Lotoreichik
    Asymptotics of resonances induced by point interactions
    Acta Phys. Pol. A. 132 (2017), 1677–1682. arXiv.

  7. Jussi Behrndt, Pavel Exner, Markus Holzmann and Vladimir Lotoreichik
    Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces
    Math. Nachr. 290 (2017), 1215–1248. arXiv.

  8. Jussi Behrndt, Rupert L. Frank, Christian Kühn, Vladimir Lotoreichik and Jonathan Rohleder
    Spectral theory for Schrödinger operators with δ-interactions supported on curves in ℝ³
    Ann. Henri Poincaré 18 (2017), 1305–1347. arXiv.

  9. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Trace formulae for Schrödinger operators with singular interactions
    The Pavel Exner Anniversary Volume, EMS (2017), 129–152. arXiv.

  10. Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder
    Quasi boundary triples and semibounded self-adjoint extensions
    Proc. Roy. Soc. Edinburgh Sect. A. 147 (2017), 895–916. arXiv.

  11. Vladimir Lotoreichik and Jonathan Rohleder
    Eigenvalue inequalities for the Laplacian with mixed boundary conditions
    J. Differential Equations 263 (2017), 491–508. arXiv.

  12. Pavel Exner and Vladimir Lotoreichik
    A spectral isoperimetric inequality for cones
    Lett. Math. Phys. 107 (2017), 717–732. arXiv.

  13. Pavel Exner, Vladimir Lotoreichik, and Miloš Tater
    Spectral and resonance properties of the Smilansky Hamiltonian
    Phys. Lett. A. 381 (2017), 756–761. arXiv.

  14. Vladimir Lotoreichik and Petr Siegl
    Spectra of definite type in waveguide models
    Proc. Amer. Math. Soc. 145 (2017), 1231–1246. arXiv.

  15. Pavel Exner, Vladimir Lotoreichik, and Miloš Tater
    On resonances and bound states of Smilansky Hamiltonian
    Nanosystems: Physics, Chemistry, Mathematics 7 (2016), 789–802. arXiv.

  16. Michal Jex and Vladimir Lotoreichik
    On absence of bound states for weakly attractive δ'-interactions supported on non-closed curves in ℝ²
    J. Math. Phys. 57 (2016), 022101. arXiv.

  17. Vladimir Lotoreichik and Thomas Ourmières-Bonafos
    On the bound states of Schrödinger operators with δ-interactions on conical surfaces
    Comm. Partial Differential Equations 41 (2016), 999–1028. arXiv.

  18. Jussi Behrndt, Gerd Grubb, Matthias Langer, and Vladimir Lotoreichik
    Spectral asymptotics for resolvent differences of elliptic operators with δ and δ'-interactions on hypersurfaces
    J. Spectr. Theory. 5 (2015), 697–729. arXiv.

  19. Vladimir Lotoreichik, Hagen Neidhardt, and Igor Yu. Popov
    Point contacts and boundary triples
    Mathematical Results in Quantum Mechanics, Proceedings of the QMath12 Conference, P. Exner, W. König, and H. Neidhardt (eds), World Scientific, Singapore, 2015, pp. 283--293. arXiv.

  20. Vladimir Lotoreichik and Jonathan Rohlelder
    An eigenvalue inequality for Schrödinger operators with δ and δ′-interactions supported on hypersurfaces
    Oper. Theory Adv. Appl. 247 (2015), 173–184. arXiv.

  21. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Schrödinger operators with δ-interactions supported on conical surfaces
    J. Phys. A: Math. Theor. 47 (2014), 355202 (16pp). arXiv. (Open Access).

  22. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Schrödinger operators with δ and δ′-interactions on Lipschitz surfaces and chromatic numbers of associated partitions
    Rev. Math. Phys. 26 (2014), 1450015 (43pp). arXiv.

  23. Vladimir Lotoreichik
    Lower bounds on the norms of extension operators for Lipschitz domains
    Operators and Matrices 8 (2014), 573–592. arXiv.

  24. Sylwia Kondej and Vladimir Lotoreichik
    Weakly coupled bound state of 2-D Schrödinger operator with potential-measure
    J. Math. Anal. Appl. 420 (2014), 1416–1438. arXiv. (Open Access).

  25. Vladimir Lotoreichik and Sergey Simonov
    Spectral analysis of the half-line Kronig-Penney model with Wigner-von Neumann perturbations
    Rep. Math. Phys. 74 (2014), 45–72. arXiv.

  26. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Trace formulae and singular values of resolvent power differences of self-adjoint elliptic operators
    J. London. Math. Soc. (2) 88 (2013), 319–337. arXiv.

  27. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Spectral estimates for resolvent differences of self-adjoint elliptic operators
    Integral Equations and Operator Theory 77 (2013), 1–37. arXiv.

  28. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Schrödinger operators with δ and δ′-potentials supported on hypersurfaces
    Ann. Henri Poincaré 14 (2013), 385–423. arXiv.

  29. Vladimir Lotoreichik and Jonathan Rohleder
    Schatten-von Neumann estimates for resolvent differences of Robin Laplacians on a half-space
    Oper. Theory Adv. Appl. 221 (2012), 471–486. arXiv.

  30. Vladimir Lotoreichik
    Singular continuous spectrum of half-line Schrödinger operators with point interactions on a sparse set
    Opuscula Math. 31 (2011), 615–628. (Open Access).

  31. Jussi Behrndt, Matthias Langer, Igor Lobanov, Vladimir Lotoreichik and Igor Yu. Popov
    A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains
    J. Math. Anal. Appl. 371 (2010), 750–758. arXiv.

  32. Igor Lobanov, Vladimir Lotoreichik, and Igor Yu. Popov
    Lower bound on the spectrum of the two-dimensional Schrödinger operator with a delta-perturbation on a curve
    Theor. Math. Phys. 162 (2010), 332–340.

Theses

Other publications

  1. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik,
    Boundary triples for Schrödinger operators with singular interactions on hypersurfaces,
    Nanosystems: Phys. Chem. Math. 7 (2016), 290–302.

  2. Jussi Behrndt, Markus Holzmann, and Vladimir Lotoreichik
    Convergence of 2D-Schrödinger operators with local scaled short-range interactions to a Hamiltonian with infinitely many delta-point interactions
    Proc. Appl. Math. Mech. 14 (2014), 1005-1006. (Open Access).

  3. Vladimir Lotoreichik
    Note on 2D Schrödinger operators with δ-interactions on angles and crossing lines
    Nanosystems: Phys. Chem. Math. 4 (2013), 1–7. arXiv. (Open Access).

  4. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Essential spectrum of Schrödinger operators with δ-interactions on the union of compact Lipschitz hypersurfaces
    Proc. Appl. Math. Mech. (2013), 523–524. (Open Access).