Surprising spectra of \mathcal{PT}-symmetric point interactions

Petr Siegl

Nuclear Physics Institute, Řež
Faculty of Nuclear Sciences and Physical Engineering, Prague
Laboratoire Astroparticules et Cosmologie, Université Paris 7, Paris
\textbf{Why point interactions?}

- solvable models with both continuous and point spectra
- explicit formulas for metric operators

 2005 Albeverio, Kuzhel, 2006 Krejčiřík, Bíla, Znojil, 2008 Siegl

- resolvent criterion for similarity to the self-adjoint operator is applicable in a straightforward way

 2005 Albeverio, Kuzhel

real spectrum is not sufficient for similarity to the self-adjoint operator (quasi-Hermiticity)
PT-symmetric point interactions

Definitions of operators

- line $L^2(\mathbb{R})$ or finite interval (circle) $L^2(a, b)$
- $H = -\frac{d^2}{dx^2}$
- $\text{Dom}(H) = AC^1 + \text{boundary conditions at } x = 0 \text{ or at } x = a, b$
\(\mathcal{P}\mathcal{T} \)-symmetric point interactions

\(\mathcal{P}\mathcal{T} \)-symmetric boundary conditions

\[
\begin{pmatrix}
\psi(0^+) \\
\psi'(0^+)
\end{pmatrix}
= B
\begin{pmatrix}
\psi(0^-) \\
\psi'(0^-)
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
\sqrt{1+bce^{i\phi}} & b \\
c & \sqrt{1+bce^{-i\phi}}
\end{pmatrix}, \quad b \geq 0, c \geq -1/b, \quad \phi \in (-\pi, \pi]
\]
System on a line - interaction at $x = 0$

Symmetries

- **\mathcal{PT}-symmetry:** $\mathcal{PT}H\psi = H\mathcal{PT}\psi$, $\forall \psi \in \text{Dom}(H)$
- **\mathcal{P}-pseudo-Hermiticity:** $H^* = \mathcal{P}Hp\mathcal{P}$
- **\mathcal{T}-self-adjointness:** $H^* = \mathcal{T}H\mathcal{T}$
- **\mathcal{T}-complex conjugation, \mathcal{P}-parity**

Spectrum

- residual part is empty $\sigma_r(H) = \emptyset$ 2008 Borisov, Krejčiřík
- continuous spectrum $\sigma_c(H) = [0, \infty)$
- $b \neq 0, c \neq 0$ point spectrum - at most two eigenvalues
 - real if $bc \sin^2 \phi \leq \cos^2 \phi$ or $bc \sin^2 \phi \geq \cos^2 \phi$ and $\cos \phi \geq 0$
2002 Albeverio, Fei, Kurasov
Special case $b = 0, c = 0$

Definition of operator
- $L^2(\mathbb{R})$
- $H_\phi = -\frac{d^2}{dx^2}$
- $\text{Dom}(H_\phi) = AC^1(\mathbb{R})$
- $\psi(0+) = e^{i\phi}\psi(0-)$
- $\psi'(0+) = e^{-i\phi}\psi'(0-)$,

Symmetries
- $\mathcal{P}\mathcal{T}H_\phi\psi = H_\phi\mathcal{P}\mathcal{T}\psi$
- $H_\phi^* = H_{-\phi}$
- $H_\phi^* = \mathcal{P}H_\phi\mathcal{P}$
- $H_\phi^* = \mathcal{T}H_\phi\mathcal{T}$
- H_ϕ is closed

Petr Siegl
Surprising spectra of $\mathcal{P}\mathcal{T}$ PI
Special case $b = 0, c = 0$

Boundary conditions

$$
\psi(0+) = e^{i\phi}\psi(0-)
$$
$$
\psi'(0+) = e^{-i\phi}\psi'(0-)
$$

Special cases

- $\phi = 0$ - self-adjoint operator, no interaction
 $$
 \psi(0+) = \psi(0-), \quad \psi'(0+) = \psi'(0-)
 $$
- $\phi \neq \pm \pi/2$ - continuous spectrum $[0, \infty)$, no eigenvalues, quasi-Hermitian
- $\phi = \pm \pi/2$ - SURPRISING CASE
 $$
 \psi(0+) = \pm i\psi(0-), \quad \psi'(0+) = \mp i\psi'(0-)
 $$
Special case $b = 0, c = 0$

Boundary conditions

\[
\psi(0^+) = e^{i\phi}\psi(0^-)
\]
\[
\psi'(0^+) = e^{-i\phi}\psi'(0^-)
\]

Special cases

- $\phi = 0$ - self-adjoint operator, no interaction
 \[
 \psi(0^+) = \psi(0^-), \quad \psi'(0^+) = \psi'(0^-)
 \]

- $\phi \neq \pm \pi/2$ - continuous spectrum $[0, \infty)$, no eigenvalues, quasi-Hermitian
 \[
 \phi = \pm \pi/2 - \text{SURPRISING CASE}
 \]
 \[
 \psi(0^+) = \pm i\psi(0^-), \quad \psi'(0^+) = \mp i\psi'(0^-)
 \]
Special case $b = 0, c = 0$

Boundary conditions

\[\psi(0+) = e^{i\phi}\psi(0-) \]
\[\psi'(0+) = e^{-i\phi}\psi'(0-) \]

Special cases

- $\phi = 0$ - self-adjoint operator, no interaction
 \[\psi(0+) = \psi(0-), \psi'(0+) = \psi'(0-) \]
- $\phi \neq \pm \pi/2$ - continuous spectrum $[0, \infty)$, no eigenvalues, quasi-Hermitian
- $\phi = \pm \pi/2$ - SURPRISING CASE
 \[\psi(0+) = \pm i\psi(0-), \psi'(0+) = \mp i\psi'(0-) \]
Special case $b = 0, c = 0, \phi \neq \pm\pi/2$

Quasi-Hermiticity

- H_ϕ is quasi-Hermitian:
 \[
 \Theta H_\phi^* = H_\phi \Theta, \quad \Theta, \Theta^{-1} \in \mathcal{B}(\mathcal{H}), \quad \Theta > 0
 \]
- \[
 \Theta = I - i \sin \phi P_{\text{sign}} \mathcal{P}
 \]
 \[
 (P_{\text{sign}} f)(x) = \text{sign}(x) f(x), \quad \mathcal{P}-\text{parity}
 \]

Metric operator Θ

- spectrum - only two eigenvalues $1 - \sin \phi, 1 + \sin \phi$
- $\Theta > 0, \Theta^{-1} \in \mathcal{B}(\mathcal{H})$
- $\Theta H_\phi^* = H_\phi \Theta$ is valid
- Θ is not invertible if $\phi = \pm\pi/2$!
Special case $b = 0, c = 0, \phi \neq \pm \pi/2$

Quasi-Hermiticity

- H_ϕ is quasi-Hermitian:
 \[\Theta H_\phi^* = H_\phi \Theta, \quad \Theta, \Theta^{-1} \in \mathcal{B}(\mathcal{H}), \quad \Theta > 0 \]
- $\Theta = I - i \sin \phi P_{\text{sign}} \mathcal{P}$
 \[(P_{\text{sign}} f)(x) = \text{sign} x f(x), \mathcal{P}-\text{parity} \]

Metric operator Θ

- spectrum - only two eigenvalues $1 - \sin \phi, 1 + \sin \phi$
- $\Theta > 0, \Theta^{-1} \in \mathcal{B}(\mathcal{H})$
- $\Theta H_\phi^* = H_\phi \Theta$ is valid
- Θ is not invertible if $\phi = \pm \pi/2$!
Special case \(b = 0, \ c = 0, \ \phi \neq \pm \pi/2 \)

Construction of \(\Theta \) 2008 Siegl

- finite interval \((-l, l)\) - interaction at \(x = 0 \), Dirichlet BC at \(\pm l \)
- discrete spectrum \(\lambda_n = \left(\frac{n\pi}{2l} \right)^2, \ n \in \mathbb{N}_0 \)
- eigenfunctions

 \[
 \psi_{2n}(x) = (e^{-i\phi} \vartheta(x) + \vartheta(-x)) \sin \frac{n\pi}{l} x \\
 \psi_{2n+1}(x) = (e^{i\phi} \vartheta(x) - \vartheta(-x)) \cos \frac{(2n+1)\pi}{2l} x
 \]

- \(\Theta = \text{s-lim}_{N \to \infty} \sum_{j=1}^{N} c_j \langle \phi_j, \cdot \rangle \phi_j = I - i \sin \phi P_{\text{sign}} \mathcal{P} \)
- \(\phi_n = \mathcal{P} \psi_n \) eigenfunctions of \(H^* \)
- limit \(l \to \infty \)
Surprising case $b = 0, c = 0, \phi = \pi/2$

Properties of $H_{\pi/2}$

- $\psi(0+) = i\psi(0-)$, $\psi'(0+) = -i\psi'(0-)$
- $H_{\pi/2}$ is \mathcal{PT}-symmetric, \mathcal{P}-pseudo-Hermitian, \mathcal{T}-self-adjoint
- $H_{\pi/2}^* = H_{-\pi/2}$, $H_{\pi/2}$ is closed
- $\Theta H_{\pi/2}^* = H_{\pi/2} \Theta$
- $\Theta = I - iP_{\text{sign}} \mathcal{P}$, $\Theta \geq 0$, Θ is not invertible!

Spectrum

- residual spectrum is empty
- continuous spectrum $[0, \infty)$
- point spectrum $\mathbb{C} \setminus [0, \infty)$!
Surprising case $b = 0, c = 0, \phi = \pi/2$

Properties of $H_{\pi/2}$

- $\psi(0+) = i\psi(0-), \psi'(0+) = -i\psi'(0-)$
- $H_{\pi/2}$ is \mathcal{PT}-symmetric, \mathcal{P}-pseudo-Hermitian, \mathcal{T}-self-adjoint
- $H^*_{\pi/2} = H_{-\pi/2}$, $H_{\pi/2}$ is closed
- $\Theta H^*_{\pi/2} = H_{\pi/2}\Theta$
- $\Theta = I - i\text{sign}\mathcal{P}$, $\Theta \geq 0$, Θ is not invertible!

Spectrum

- residual spectrum is empty
- continuous spectrum $[0, \infty)$
- point spectrum $\mathbb{C} \setminus [0, \infty)$!
Surprising case \(b = 0, c = 0, \phi = \pi/2 \)

Properties of \(H_{\pi/2} \)
- \(\psi(0^+) = i\psi(0^-), \psi'(0^+) = -i\psi'(0^-) \)
- \(H_{\pi/2} \) is \(\mathcal{PT} \)-symmetric, \(\mathcal{P} \)-pseudo-Hermitian, \(\mathcal{T} \)-self-adjoint
- \(H_{\pi/2}^* = H_{-\pi/2}, H_{\pi/2} \) is closed
- \(\Theta H_{\pi/2}^* = H_{\pi/2} \Theta \)
- \(\Theta = I - iP_{\text{sign}}\mathcal{P}, \Theta \geq 0, \Theta \) is not invertible!

Spectrum
- residual spectrum is empty
- continuous spectrum \([0, \infty)\)
- point spectrum \(\mathbb{C} \setminus [0, \infty) \)!
Surprising case \(b = 0, c = 0, \phi = \pi/2 \)

Properties of \(H_{\pi/2} \)

- \(\psi(0+) = i\psi(0-), \psi'(0+) = -i\psi'(0-) \)
- \(H_{\pi/2} \) is \(\mathcal{PT} \)-symmetric, \(\mathcal{P} \)-pseudo-Hermitian, \(\mathcal{T} \)-self-adjoint
- \(H^*_{\pi/2} = H_{-\pi/2} \), \(H_{\pi/2} \) is closed
- \(\Theta H^*_{\pi/2} = H_{\pi/2} \Theta \)
- \(\Theta = I - i\text{sign}\mathcal{P}, \Theta \geq 0, \Theta \) is not invertible!

Spectrum

- residual spectrum is empty
- continuous spectrum \([0, \infty)\)
- point spectrum \(\mathbb{C} \setminus [0, \infty) \)
Surprising case $b = 0, c = 0, \phi = \pi/2$

Eigenfunctions of $H_{\pi/2}$

\[
\psi_k(x) = \begin{cases}
 e^{kx}, & x < 0, \\
 ie^{-kx}, & x > 0,
\end{cases}
\]

\[
\varphi_k(x) = \begin{cases}
 e^{-kx}, & x < 0, \\
 ie^{kx}, & x > 0,
\end{cases}
\]

\[
\zeta_k(x) = \begin{cases}
 e^{-ikx}, & x < 0, \\
 ie^{ikx}, & x > 0.
\end{cases}
\]

$\psi_k \in L^2(\mathbb{R})$ for $\text{Re} \, k > 0$, $\varphi_k \in L^2(\mathbb{R})$ for $\text{Re} \, k < 0$, $\zeta_k \in L^2(\mathbb{R})$ for $\text{Re} \, k = 0$ and $\text{Im} \, k > 0$.
Models on finite interval

Models on a finite interval \((-l, l)\)

- \(L^2(-l, l), H = -\frac{d^2}{dx^2}\)
- \(\text{Dom}(H) = AC^1(-l, l)\)
- 2 interactions - at \(x = 0\) and \(x = \pm l\) - 2 BC
- at \(x = 0\) - \(\mathcal{PT}\)-symmetric interaction \(b = 0, c = 0\)
- at \(x = \pm l\) - both self-adjoint and \(\mathcal{PT}\)-symmetric interactions
Compact resolvent guaranteed?

Theorem (Kato)

Let $T_1, T_2 \in \mathcal{C}(\mathcal{H})$ have non-empty resolvent sets. Let T_1, T_2 be extensions of a common operator T_0, with order of extension for T_1 being finite. Then T_1 has compact resolvent if and only if T_2 has compact resolvent.
\(\mathcal{PT} \)-symmetric and symmetric interaction

Symmetric point interaction at \(x = \pm l \)

\[
(U - I)\Psi(l) + i L_0 (U + I)\Psi'(l) = 0
\]

\[
\Psi(l) = \begin{pmatrix} \psi(l) \\ \psi(-l) \end{pmatrix}, \quad \Psi'(l) = \begin{pmatrix} \psi'(l) \\ -\psi'(-l) \end{pmatrix}
\]

\(U \) is unitary matrix

\(\mathcal{PT} \)-symmetric point interaction at \(x = 0 \)

\[
\psi(0+) = e^{i\phi}\psi(0-)
\]

\[
\psi'(0+) = e^{-i\phi}\psi'(0-)
\]
\mathcal{PT}-symmetric and symmetric interaction

Spectrum

- discrete ($\lambda = k^2$) if $\phi \neq \pm \pi/2$

$$\cos \phi \left(P_1(U) - 2ikL_0 P_2(U) \cos 2kI + k^2 L_0^2 P_3(U) \sin 2kI \right) +$$

$$+ 2ikL_0 \left(u_{12} + u_{21} + i(u_{11} - u_{22}) \sin \phi \right) = 0$$

- $\phi = \pm \pi/2$
 - empty if $u_{12} + u_{21} \pm i(u_{11} - u_{22}) \neq 0$
 - entire \mathbb{C} if $u_{12} + u_{21} \pm i(u_{11} - u_{22}) = 0$

Dirichlet $U = -I$, Neumann $U = I$, Robin $U = \alpha I$, $\alpha \in \mathbb{R}$
Two \mathcal{PT}-symmetric interactions

\[
\begin{align*}
\psi(0^+) &= e^{i\phi_1} \psi(0^-) \\
\psi'(0^+) &= e^{-i\phi_1} \psi'(0^-) \\
\begin{pmatrix}
\psi(l) \\
\psi'(l)
\end{pmatrix} &= B
\begin{pmatrix}
\psi(-l) \\
\psi'(-l)
\end{pmatrix} \\
B &= \begin{pmatrix}
\sqrt{1 + b_2 c_2 e^{i\phi_2}} & b_2 \\
c_2 & \sqrt{1 + b_2 c_2 e^{-i\phi_2}}
\end{pmatrix}
\end{align*}
\]
Two \mathcal{PT}-symmetric interactions

Spectrum

- discrete ($\lambda = k^2$) if
 - $\phi_1 \neq \pm \pi/2, \phi_2 \neq \pm \pi/2$
 - $\phi_1 \neq \pm \pi/2, \phi_2 = \pm \pi/2$ and $b_2 \neq 0$ or $c_2 \neq 0$

\[
\cos \phi_1 \left((b_2 k^2 - c_2) \sin 2kl + 2k \sqrt{1 + b_2 c_2} \cos \phi_2 \cos 2kl \right) + 2k \left(\sqrt{1 + b_2 c_2} \sin \phi_1 \sin \phi_2 - 1 \right) = 0.
\]

- empty if $\phi_1 = \pm \pi/2$ and $\sqrt{1 + b_2 c_2} \sin \phi_2 - 1 \neq 0$
- entire \mathbb{C} if $\phi_1 = \pm \pi/2$ and $\sqrt{1 + b_2 c_2} \sin \phi_2 - 1 = 0$
- $b_2 = c_2 = 0$
 - empty if $\phi_1 = \pm \pi/2$ and $\phi_2 \neq \pm \pi/2$
 - entire \mathbb{C} if $\phi_1 = \phi_2 = \pm \pi/2$
Conclusions

- Spectral properties of \mathcal{PT}-symmetric operators can be very rich.
- \mathcal{PT}-symmetry, pseudo-Hermiticity, J-self-adjointness do not guarantee non-empty spectrum, countable point spectrum, spectral decomposition.
- Examples of \mathcal{PT}-symmetric point interactions:
 - line $\mathbb{R} - \sigma = \mathbb{C}$, $\sigma_c = [0, \infty)$, $\sigma_p = \mathbb{C} \setminus [0, \infty)$
 - finite interval $(-l, l) - \sigma = \emptyset$ versus $\sigma = \sigma_p = \mathbb{C}$