Quasi-Hermitian Model with Point Interactions and Supersymmetry

Petr Siegl
Nuclear Physics Institute, Prague
Faculty of Nuclear Sciences and Physical Engineering
siegl@ujf.cas.cz

Introduction

Supersymmetry in quantum mechanics with two Hermitian point interactions (at $x = 0$ and $x = l$) is allowed only for two special classes of models [1]. Are the systems with two PT-symmetric point interactions compatible with supersymmetry? What are the appropriate classes of boundary conditions? Are all energy levels real? Is it possible to construct positive metric operator ψ?

PT-symmetric point interactions and SUSY

- **General PT-symmetric point interactions** are characterized by boundary conditions [2]

 \[
 \left(\psi(0) - e^{i \theta} \psi(0)\right) = 0,
 \left(\psi(0) - e^{-i \theta} \psi(-0)\right) = 0.
 \]

- **Requirement of SUSY** restricts the ranges of parameters b, c, θ, ϕ

- **The only possible boundary conditions** are given by matrices B_{\pm}

\[
\Psi = \left(\begin{array}{c}
\psi(x) \\
\psi(-x)
\end{array}\right), \quad \Psi' = \left(\begin{array}{c}
\psi'(x) \\
-\psi'(x)
\end{array}\right), \quad B_{\pm} = \pm \left(\begin{array}{c}
\tan \phi & i \tan \phi
\end{array}\right).
\]

Model of the type $(+ +)$

- **Both interactions characterized by B_{+} matrix**
- **Eigenvalues and eigenfunctions**

 \[
 E_n = \left(\frac{(n + 1)^2}{4}\right)^2, \quad n \in \mathbb{N}.
 \]

- **Supersymmetry is unbroken**

 \[
 \Theta = I - \frac{\beta_1}{\beta_1 + \beta_2} P^+ P + \frac{\beta_2}{\beta_1 + \beta_2} P^+ P, \quad P^+ \text{ are projectors}
 \]

 \[
 (P^+ \psi)(x) = \theta(\pm x) \psi(x), \quad (P^+ \psi)^* = (P^+ \psi)^*, \quad P^+ P^* = P^* P = 0
 \]

Model of the type $(+ -)$

- **Interactions characterized by B_{-} at $x = 0$ and by B_{+} at $x = l$**
- **Eigenvalues and eigenfunctions**

 \[
 E_n = \left(\frac{(n - 1)^2}{4}\right)^2, \quad n \in \mathbb{N}.
 \]

- **Supersymmetry is broken**

 \[
 \Theta = P^+ (O_1 + O_2) P^+ + P^+ (O_1 + O_2) P^+ - \frac{\beta_2}{\beta_1 + \beta_2} P^+ O_2 P^+, \quad O_{1,2} \text{ are projectors}
 \]

References