- O. Mustafa and M. Znojil,

PT symmetric pseudo-perturbation recipe: an imaginary cubic oscillator with spikes

(math-ph/0206042), J. Phys. A: Math. Gen. 35 (2002) 8929 - 8942.

- G. Levai and M. Znojil,

The interplay of supersymmetry and ${\cal PT}$ symmetry in quantum mechanics: a case study for the Scarf II potential

(quant-ph/0206013), J. Phys. A: Math. Gen. 35 (2002) 8793 - 8804.

- M. Znojil,

A generalization of the concept of PT symmetry

(math-ph/0106021), in ``Quantum Theory and Symmetries", ed. E. Kapuscik and A. Horzela, Word Sci., Singapore,2002, pp. 626-631.

- M. Znojil,

Should PT symmetric quantum mechanics be interpreted as nonlinear?

(quant-ph/0103054v4), J. Nonlin. Math. Phys. 9, suppl. 2 (2002), 122-133

(= special issue on Lie Symmetry Analysis and Applications, in honour of the 60th birthday of Peter Leach).

- M. Znojil, F. Gemperle and O. Mustafa,

Asymptotic solvability of an imaginary cubic oscillator with spikes

(hep-th/0205181), J. Phys. A: Math. Gen. 35 (2002) 5781 - 5793.

- M. Znojil,

Solvable PT-symmetric Hamiltonians

(quant-ph/0008125), Physics of Atomic Nuclei 65 (2002) 1149 - 1151

= the English version of

Yad. Fiz. 65 (2002), 1182-1184.

- M. Znojil,

Non-Hermitian SUSY and singular, PT-symmetrized oscillators

(hep-th/0201056), J. Phys. A: Math. Gen. 35 (2002) 2341 - 2352.

- M. Znojil,

Generalized Rayleigh-Schr\"{o}dinger perturbation theory as a method of linearization of the so called quasi-exactly solvable models

(math-ph/0101015v2) Proc. Inst. Math. NAS (Ukraine), Vol. 43, Part 2 (2002), pp 777 - 781.

Note: Reprints available upon an e-mailed request.

undated updates