1. B. Bagchi, H. Bila, V. Jakubsky, S. Mallik, C. Quesne and M. Znojil,
    PT-symmetric supersymmetry in a solvable short-range model
    Int. J. Mod. Phys. A , to appear

  2. Miloslav Znojil,
    Coupled-channel version of PT-symmetric square well
    (quant-ph/0511085) J. Phys. A: Math. Gen., to appear

  3. H. Bila, V. Jakubsky and M. Znojil,
    'Comment on `Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry' [J. Y. Guo and Z-Q. Sheng, Phys. Lett. A 338 (2005) 90]
    (math-ph/0510097) Phys. Lett. A, to appear

  4. Miloslav Znojil,
    Solvable relativistic quantum dots with vibrational spectra.
    (quant-ph/0506017) Czech. J. Phys. 55 (2005) 1187 - 1192

  5. C. Quesne, B. Bagchi, S. Mallik, H. Bila, V. Jakubsky and M. Znojil,
    PT-supersymmetric partner of a short-range square well.
    Czech. J. Phys. 55 (2005) 1161 - 1166

  6. Vit Jakubský and Miloslav Znojil,
    An explicitly solvable model of the spontaneous PT-symmetry breaking
    (quant-ph/0507132) Czech. J. Phys. 55 (2005) 1113 - 1116

  7. H. Bila, V. Jakubsky, M. Znojil, B. Bagchi, S. Mallik and C. Quesne,
    Weakly non-Hermitian square well
    Czech. J. Phys. 55 (2005) 1075 - 1076

  8. Miloslav Znojil,
    PT-symmetric quantum toboggans
    DOI information: doi:
    (quant-ph/0502041) Phys. Lett. A 342 (2005) 36-47.

  9. Miloslav Znojil,
    Perturbation method for non-square Hamiltonians and its application to polynomial oscillators
    (math-ph/0503011v2), Phys. Lett. A 341 (2005) 67 - 80.

  10. M. Znojil,
    Solvable PT-symmetric model with a tunable interspersion of non-merging levels
    (quant-ph/0410196), J. Math. Phys. 46 (2005) 062109

  11. Miloslav Znojil and Vít Jakubský,
    Solvability and PT-symmetry in a double-well model with point interactions
    (electronic: quant-ph/0503235, doi: click or the journal's temporarily free access),
    J. Phys. A: Math. Gen. 38 (2005) 5041-5056.

  12. Uwe Guenther, Frank Stefani and Miloslav Znojil,
    MHD alpha^2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator
    (math-ph/0501069, doi:10.1063/1.1915293), J. Math. Phys. 46, 063504 (2005)

  13. B. Bagchi, A. Banerjee, E. Caliceti, F. Cannata, H. B. Geyer, C. Quesne and M. Znojil,
    CPT-conserving Hamiltonians and their nonlinear supersymmetrization using differential charge-operators C
    Int. J. Mod. Phys. A 20 (2005) 7107 - 7128.

  14. Miloslav Znojil,
    An asymptotic intertwining of the undelayed and delayed Fibonacci numbers
    Int. J. of Pure and Applied Math. 19 (2005) 525 - 539

  15. Emanuela Caliceti, Francesco Cannata, Miloslav Znojil and Alberto Ventura,
    Construction of PT-asymmetric non-Hermitian Hamiltonians with CPT-symmetry.
    Phys. Lett. A 335 (2005) 26-30
    DOI information: doi:

  16. Vit Jakubsky, Miloslav Znojil, Euclides Augusto Luis and Frieder Kleefeld,
    Trigonometric identities, angular Schr\"{o}dinger equations and a new family of solvable models
    Phys. Lett. A 334 (2005) 154 - 159

  17. M. Znojil,
    Multiparametric oscillator Hamiltonians with exact bound states in infinite-dimensional space.
    Rendiconti dell Circ. Mat. Palermo, Serie II, Suppl. 75 (2005) 333-346.