1. Miloslav Znojil,
    "Non-Hermitian interaction representation and its use in relativistic quantum mechanics."
    Annals of Physics 385 (2017) pp. 162 - 179
    doi: 10.1016/j.aop.2017.08.009

  2. Miloslav Znojil, Frantisek Ruzicka and Konstantin G. Zloshchastiev,
    "Schroedinger equations with logarithmic self-interactions: from antilinear PT-symmetry to the nonlinear coupling of channels."
    Symmetry 9 (2017) 165
    doi: 10.3390/sym9080165
    ISSN 2073-8994; CODEN: SYMMAM, open access

  3. Miloslav Znojil,
    Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schroedinger equation.
    Phys. Rev. A 96, 012127 (2017)
    DOI: 10.1103/PhysRevA.96.012127

  4. Miloslav Znojil, Iveta Semoradova, Frantisek Ruzicka, Hafida Moulla and Ilhem Leghrib,
    Problem of the coexistence of several non-Hermitian observables in PT-symmetric quantum mechanics.
    Phys. Rev. A 95, 042122 (2017)
    DOI: 10.1103/PhysRevA.95.042122

  5. Sergii Kuzhel and Miloslav Znojil,
    Non-self-adjoint Schroedinger operators with nonlocal one point interactions.
    Banach J. Math. Anal. 11 (2017), no. 4, 923-944
    (ISSN 1735-8787)
    DOI: 10.1215/17358787-2017-0032

  6. Denis I. Borisov and Miloslav Znojil:
    "O sobstvennykh znacheniyakh PT-simmetrichnogo operatora v tonkom sloe."

    Matematicheskii Sbornik 208, Nr. 2 (2017), pp. 3 - 30
    DOI: 10.4213/sm8657, in Russian;

    the same paper in English version/translation/mutation:
    "On eigenvalues of a PT-symmetric operator in a thin layer."
    Sbornik: Mathematics 208:2 (2017), pp. 173–199 ,
    DOI: 10.1070/SM8657
    ISSN Print 1064-5616, ISSN Onlilne 1468-4802


  8. Bijan Bagchi, Syed M. Kamil, Tarun R. Tummuru, Iveta Semoradova and Miloslav Znojil,
    Branched Hamiltonians for a Class of Velocity Dependent Potentials
    Journal of Physics: Conference Series 839 (2017) 012011
    doi :10.1088/1742-6596/839/1/012011
    proceedings of Quantum Fest 2016


  10. Konstantin G. Zloshchastiev and Miloslav Znojil,
    "Logarithmic wave equation: origins and applications."
    Visnyk Dnipropetrovs’kogo universytetu. Serija Fizyka, radioelektronyka.
    Issue 23(2). V. 24, 2016, pp. 101 -- 107,
    ISSN 2408-9419


  12. Miloslav Znojil,
    Three-Hilbert-space formulation of quantum theory: unitary evolution via non-Hermitian Hamiltonians.
    to appear in "Topics in Quantum Physics and Path Integrals",
    ed., by Abdenacer Makhlouf (Univ. de Haute Alsace, Mulhouse, France),
    as lecture notes of the "4-th Jijel School of Theoretical Physics" (25. - 29. IX. 2016).

Note: Reprints available upon e-mailed request.
undated updates