Geometry of the Berry Phase

.... a concise μ-seminar exposition

Denis Kochan

Comenius University

October 11, Řež
The problem formulation

What is given:
The problem formulation

What is given:

- separable Hilbert space \mathcal{H}
The problem formulation

What is given:

- separable Hilbert space \mathcal{H}
- space of parameters \mathcal{Q} (structureness object, e.g. manifold)
The problem formulation

What is given:

- separable Hilbert space \mathcal{H}
- space of parameters \mathcal{Q} (structureness object, e.g. manifold)
- smooth family of self-adjoint Hamiltonians $\{\hat{H}(q)\}_{q \in \mathcal{Q}}$ in \mathcal{H}
The problem formulation

What is given:

- separable Hilbert space \mathcal{H}
- space of parameters \mathcal{Q} (structureness object, e.g. manifold)
- smooth family of self-adjoint Hamiltonians $\{\hat{H}(q)\}_{q \in \mathcal{Q}}$ in \mathcal{H}

simplification: spectra $\forall \hat{H}(q)$ are discrete and nondegenerate
The problem formulation

What is given:

- separable Hilbert space \mathcal{H}
- space of parameters \mathcal{Q} (structureness object, e.g. manifold)
- smooth family of self-adjoint Hamiltonians $\{\hat{H}(q)\}_{q \in \mathcal{Q}}$ in \mathcal{H}

simplification: spectra $\forall \, \hat{H}(q)$ are discrete and nondegenerate

- equivalently, there \exists a collection of smooth maps $\{\Phi_m\}$

\[
\Phi_m : q \mapsto \{|m(q)\rangle, E_m(q)\}, \quad \text{where} \quad \hat{H}(q)|m(q)\rangle = E_m(q)|m(q)\rangle
\]
The problem formulation

What is given:

- separable Hilbert space \mathcal{H}
- space of parameters \mathcal{Q} (structureness object, e.g. manifold)
- smooth family of self-adjoint Hamiltonians $\{\hat{H}(q)\}_{q \in \mathcal{Q}}$ in \mathcal{H}

simplification: spectra $\forall \hat{H}(q)$ are discrete and nondegenerate

- equivalently, there \exists a collection of smooth maps $\{\Phi_m\}$

$\Phi_m : q \mapsto \{|m(q)\rangle, E_m(q)\}$, where $\hat{H}(q)|m(q)\rangle = E_m(q)|m(q)\rangle$

- Remark I.: (gauge transformation in given eigenvalue sector)

$\Phi_m \mapsto \Phi'_m : q \mapsto \{|\tilde{m}(q)\rangle = e^{i\alpha_m(q)}|m(q)\rangle, E_m(q)\}$
Geometrical overview - fiber bundle perspective

\[\mathcal{Q} \times \mathcal{H} \]

\(\{ \mathcal{H}, \hat{H}(q) \} \)

\(\{ \mathcal{H}, \hat{H}(q') \} \)

\[|m(q)\rangle \]

\[|k(q)\rangle \]

\[|n(q)\rangle \]

\[|m(q')\rangle \]

\[|k(q')\rangle \]

\[|n(q')\rangle \]
The problem formulation continues

What is still given:
The problem formulation continues

What is still given:

- a circuit (smooth loop) C in the parameter space \mathcal{Q}

$$C : t \in [0, T] \rightarrow q_C(t) \in \mathcal{Q}, \text{ such that } q_C(0) = q_C(T)$$
What is still given:

- a circuit (smooth loop) C in the parameter space \mathcal{Q}

$$C : t \in [0, T] \mapsto q_C(t) \in \mathcal{Q}, \text{ such that } q_C(0) = q_C(T)$$

- an initial condition = n-th eigenstate $|n(q_C(t = 0))\rangle \in \mathcal{H}$
The problem formulation continues

What is still given:

- **a circuit** (smooth loop) C in the parameter space Q

 $$C : t \in [0, T] \mapsto q_C(t) \in Q, \text{ such that } q_C(0) = q_C(T)$$

- an initial condition = n-th eigenstate $|n(q_C(t = 0))\rangle \in \mathcal{H}$

What is the task:
The problem formulation continues

What is still given:

- a circuit (smooth loop) C in the parameter space \mathcal{Q}

\[C : t \in [0, T] \mapsto q_C(t) \in \mathcal{Q}, \text{ such that } q_C(0) = q_C(T) \]

- an initial condition = n-th eigenstate $|n(q_C(t = 0))\rangle \in \mathcal{H}$

What is the task:

- to find a solution $|\Psi(q_C(t = T))\rangle$ of the Schrödinger equation:

\[i\hbar \partial_t |\Psi(t)\rangle = \hat{H}(q_C(t))|\Psi(t)\rangle + \text{ initial condition} \]
<table>
<thead>
<tr>
<th>The Problem</th>
<th>The Solution</th>
<th>Adiabaticity & (An)holonomy</th>
<th>Conclusion</th>
<th>Final remark</th>
</tr>
</thead>
</table>

Denis Kochan
Comenius University

Geometry of the Berry Phase
General procedure
General procedure

- circuit C specifies a subensemble: $\{q, t \mapsto |m(q_C)\rangle, E_m(q_C)\}$
General procedure

- circuit C specifies a subensemble: $\{q, t \mapsto |m(q_C)\rangle, E_m(q_C)\}$

- ansatz:
General procedure

- circuit C specifies a subensemble: $\{q, t \mapsto |m(q_C)\rangle, E_m(q_C)\}$

- ansatz: $|\psi\rangle = \sum_m B_m(t) \exp\left\{-\frac{i}{\hbar} \int_{0}^{t} E_m(q_C(\tau)) d\tau\right\} |m(q_C(t))\rangle$
General procedure

- circuit C specifies a subensemble: \(\{ q, t \mapsto |m(q_C)\rangle, E_m(q_C)\} \)

- ansatz: \(|\psi\rangle = \sum_m B_m(t) \exp \left\{ -\frac{i}{\hbar} \int_0^t E_m(q_C(\tau)) d\tau \right\} |m(q_C(t))\rangle \)

self-adjointness of the family of Hamiltonians \(\{ \hat{H}(q) \} \) \(q \in \Omega \)
General procedure

- Circuit C specifies a subensemble: $\{q, t \mapsto |m(q_C)\rangle, E_m(q_C)\}$

- Ansatz: $|\psi\rangle = \sum_m B_m(t) \exp\{-\frac{i}{\hbar} \int_0^t E_m(q_C(\tau)) d\tau\} |m(q_C(t))\rangle$

 self-adjointness of the family of Hamiltonians $\{\hat{H}(q)\}_{q \in \Omega}$

 set of equations: $\frac{d}{dt} \{\hat{H}(q_C)|m(q_C)\rangle\} = \frac{d}{dt} \{E_m(q_C)|m(q_C)\rangle\}$
General procedure

- Circuit C specifies a subensemble: $\{q, t \mapsto |m(q_C)\rangle, E_m(q_C)\}$

- Ansatz: $|\psi\rangle = \sum_m B_m(t) \exp\{-\frac{i}{\hbar} \int_0^t E_m(q_C(\tau))d\tau\} |m(q_C(t))\rangle$

 Self-adjointness of the family of Hamiltonians $\{\hat{H}(q)\}_{q \in \Omega}$

 Set of equations: $\frac{d}{dt}\{\hat{H}(q_C)|m(q_C)\rangle\} = \frac{d}{dt}\{E_m(q_C)|m(q_C)\rangle\}$

- Result in a system of the first-order diff. eq. for $\{B_m(t)\}$:

$$\dot{B}_m = -B_m\langle m|\hat{m}\rangle - \sum_{k \neq m} B_k \frac{\langle m| \frac{d}{dt}\hat{H}(t)|k\rangle}{E_k - E_m} \exp\{-\frac{i}{\hbar} \int_0^t (E_k - E_m)d\tau\}$$
General procedure

- Circuit C specifies a subensemble: $\{q, t \mapsto |m(q_C)\rangle, E_m(q_C)\}$

- Ansatz: $|\Psi\rangle = \sum_m B_m(t) \exp\left\{ -\frac{i}{\hbar} \int_0^t E_m(q_C(\tau)) d\tau \right\} |m(q_C(t))\rangle$

 Self-adjointness of the family of Hamiltonians $\{\hat{H}(q)\}_{q \in \Omega}$

- Set of equations:

 $\frac{d}{dt}\{\hat{H}(q_C)|m(q_C)\rangle\} = \frac{d}{dt}\{E_m(q_C)|m(q_C)\rangle\}$

- Result in a system of the first-order diff. eq. for $\{B_m(t)\}$:

 \[\dot{B}_m = -B_m \langle m|\hat{m}\rangle - \sum_{k \neq m} B_k \frac{\langle m|\frac{d}{dt}\hat{H}(t)|k\rangle}{E_k - E_m} \exp\left\{ -\frac{i}{\hbar} \int_0^t (E_k - E_m) d\tau \right\} \]

- Together with set of initial conditions: $\{B_m(t = 0) = \delta_{mn}\}$
Adiabatic regime solution
Adiabatic regime solution

- by definition:
 \[\text{adiabatic regime } \iff \langle m | \frac{d}{dt} \hat{H}(t) | k \rangle \to 0 \text{ for } m \neq k \]
Adiabatic regime solution

- by definition: \(\text{adiabatic regime} \iff \langle m | \frac{d}{dt} \hat{H}(t) | k \rangle \to 0 \) for \(m \neq k \)

- physically it is equivalent to the requirement:

\[
\Delta_{mk} \left| \frac{d}{dt} \hat{H}(q_C) \right| \ll \left| \hat{H}(q_C) \right| , \quad \frac{1}{\Delta_{mk}} = \frac{1}{\hbar} \min_{q_C} \{|E_m(q_C) - E_k(q_C)|\}
\]
Adiabatic regime solution

- by definition: adiabatic regime $\iff \langle m|\frac{d}{dt}\hat{H}(t)|k\rangle \to 0$ for $m \neq k$

- physically it is equivalent to the requirement:

$$\Delta_{mk} \left| \frac{d}{dt} \hat{H}(q_C) \right| \ll \left| \hat{H}(q_C) \right|, \quad \frac{1}{\Delta_{mk}} = \frac{1}{\hbar} \min_{q_C} \{|E_m(q_C) - E_k(q_C)|\}$$

- adiabatic theorem: $|\psi(t)\rangle = e^{-i\gamma_n(t)}|n(q_C(t))\rangle$, where

$$\gamma_n(t) = \frac{1}{\hbar} \int_{0}^{t} E_n(\tau) d\tau + \text{Im} \int_{C(t)} \langle n(q)| \frac{d}{dq} n(q) \rangle dq =: \gamma_n^D + \gamma_n^G$$
Adiabatic regime solution

- by definition: adiabatic regime $\iff \langle m | \frac{d}{dt} \hat{H}(t) | k \rangle \to 0$ for $m \neq k$

- physically it is equivalent to the requirement:

$$\Delta_{mk} \left| \frac{d}{dt} \hat{H}(q_C) \right| \ll \left| \hat{H}(q_C) \right|, \quad \frac{1}{\Delta_{mk}} = \frac{1}{\hbar} \min_{q_C} \{|E_m(q_C) - E_k(q_C)|\}$$

- adiabatic theorem: $|\psi(t)\rangle = e^{-i\gamma_n(t)}|n(q_C(t))\rangle$, where

$$\gamma_n(t) = \frac{1}{\hbar} \int_0^t E_n(\tau)d\tau + \text{Im} \int_C \langle n(q) | \frac{d}{dq} n(q) \rangle dq =: \gamma_n^D + \gamma_n^G$$

- Remark II.: for almost 50 years was γ_n^G ignored (!)
Adiabatic regime solution

- by definition: adiabatic regime $\Leftrightarrow \langle m | \frac{d}{dt} \hat{H}(t) | k \rangle \to 0$ for $m \neq k$

- physically it is equivalent to the requirement:

$$\Delta_{mk} \left| \frac{d}{dt} \hat{H}(q_C) \right| \ll \left| \hat{H}(q_C) \right|, \quad \frac{1}{\Delta_{mk}} = \frac{1}{\hbar} \min_{q_C} \{ |E_m(q_C) - E_k(q_C)| \}$$

- adiabatic theorem: $|\Psi(t)\rangle = e^{-i\gamma_n(t)} |n(q_C(t))\rangle$, where

$$\gamma_n(t) = \frac{1}{\hbar} \int_0^t E_n(\tau) d\tau + \text{Im} \int_{C(t)} \langle n(q) | \frac{d}{dq} n(q) \rangle dq =: \gamma_n^D + \gamma_n^G$$

- Remark II.: for almost 50 years was γ_n^G ignored (!)

Born-Fock gauge fixing: $|n(q)\rangle \mapsto |\tilde{n}(q)\rangle = e^{-i\gamma_n^G} |n(q)\rangle$
Few facts
Few facts

- M. Berry: it fails globally, if fundamental group $\pi_1(C) \neq \{e\}$
Few facts

- **M. Berry**: it **fails globally**, if fundamental group $\pi_1(C) \neq \{e\}$

- **some fundamental groups**:

 \[
 \begin{align*}
 \pi_1(\text{point}) &= \{e\} & \pi_1(\text{line}) &= \{e\} \\
 \pi_1(\text{circle}) &= \mathbb{Z} & \pi_1(\text{**}) &= \mathbb{Z} \ast \mathbb{Z} / \{a^3 \ast b^{-2}\}
 \end{align*}
 \]
Few facts

- **M. Berry**: it **fails globally**, if fundamental group \(\pi_1(C) \neq \{e\} \)

- Some fundamental groups:
 - \(\pi_1(\text{point}) = \{e\} \)
 - \(\pi_1(\text{line}) = \{e\} \)
 - \(\pi_1(\text{circle}) = \mathbb{Z} \)
 - \(\pi_1(\text{braid}) = \mathbb{Z} \ast \mathbb{Z} / \{a^3 \ast b^{-2}\} \)

- How to observe a geometric phase(?):
Few facts

- **M. Berry**: it fails globally, if fundamental group $\pi_1(C) \neq \{e\}$

- some fundamental groups:

 $\pi_1(\text{point}) = \{e\}$ \hspace{1cm} $\pi_1(\text{line}) = \{e\}$

 $\pi_1(\text{circle}) = \mathbb{Z}$ \hspace{1cm} $\pi_1(\bigcirc) = \mathbb{Z} * \mathbb{Z} / \{a^3 * b^{-2}\}$

- how to observe a geometric phase(?): interference experiments
M. Berry: it fails globally, if fundamental group $\pi_1(C) \neq \{e\}$

- some fundamental groups:
 - $\pi_1(\text{point}) = \{e\}$
 - $\pi_1(\text{line}) = \{e\}$
 - $\pi_1(\text{circle}) = \mathbb{Z}$
 - $\pi_1(\text{torus}) = \mathbb{Z} \ast \mathbb{Z} / \{a^3 \ast b^{-2}\}$

- how to observe a geometric phase(?) : interference experiments

$$|\psi(0)\rangle = a_n |n\rangle + a_m |m\rangle \leadsto |\psi(T)\rangle = a_n e^{-i \gamma n} |n\rangle + a_m e^{-i \gamma m} |m\rangle$$
Few facts

- **M. Berry**: it **fails globally**, if fundamental group $\pi_1(C) \neq \{e\}$

- some fundamental groups:

 $\pi_1(\text{point}) = \{e\}$ \hspace{1cm} $\pi_1(\text{line}) = \{e\}$

 $\pi_1(\text{circle}) = \mathbb{Z}$ \hspace{1cm} $\pi_1(\bigotimes) = \mathbb{Z} \ast \mathbb{Z} / \{a^3 \ast b^{-2}\}$

- how to observe a geometric phase(?): **interference experiments**

 \[
 |\Psi(0)\rangle = a_n|n\rangle + a_m|m\rangle \quad \sim \quad |\Psi(T)\rangle = a_n e^{-i\gamma_n}|n\rangle + a_m e^{-i\gamma_m}|m\rangle
 \]

 measurement of $\langle \Psi(T)|\hat{A}|\Psi(T)\rangle$ for some observable \hat{A}

 \[
 |a_n|^2 \langle n|\hat{A}|n\rangle + |a_m|^2 \langle m|\hat{A}|m\rangle + 2\text{Re}\{a_m a_n^* \langle n|\hat{A}|m\rangle e^{-i(\gamma_m - \gamma_n)}\}
 \]
Few facts

- **M. Berry**: it fails globally, if fundamental group $\pi_1(C) \neq \{e\}$

- some fundamental groups:
 - $\pi_1(\text{point}) = \{e\}$
 - $\pi_1(\text{line}) = \{e\}$
 - $\pi_1(\text{circle}) = \mathbb{Z}$
 - $\pi_1(\text{torus}) = \mathbb{Z} \ast \mathbb{Z}/\{a^3 \ast b^{-2}\}$

- how to observe a geometric phase(?): interference experiments

$$|\Psi(0)\rangle = a_n|m\rangle + a_m|n\rangle \sim |\Psi(T)\rangle = a_n e^{-i\gamma_n}|n\rangle + a_m e^{-i\gamma_m}|m\rangle$$

measurement of $\langle \Psi(T)|\hat{A}|\Psi(T)\rangle$ for some observable \hat{A}

$$|a_n|^2 \langle n|\hat{A}|n\rangle + |a_m|^2 \langle m|\hat{A}|m\rangle + 2\text{Re}\{a_m a_n^* \langle n|\hat{A}|m\rangle e^{-i(\gamma_m - \gamma_n)}\}$$

contributes only if $[\hat{A}, \hat{H}(T)] \neq 0$
<table>
<thead>
<tr>
<th>The Problem</th>
<th>The Solution</th>
<th>Adiabaticity & (An)holonomy</th>
<th>Conclusion</th>
<th>Final remark</th>
</tr>
</thead>
</table>

Denis Kochan
Comenius University
Geometry of the Berry Phase
Quintessences - geometrical prerequisites
Quintessences - geometrical prerequisites

- in the adiabatic regime system stays in the n-th eigenstate
Quintessences - geometrical prerequisites

- in the adiabatic regime system stays in the n-th eigenstate

- n-th spectral bundle (subset of the trivial vector bundle $\mathcal{Q} \times \mathcal{H}$)

$$\mathcal{L}_n := \{(q, |\Psi\rangle) \in \mathcal{Q} \times \mathcal{H}, \langle \psi | \psi \rangle = 1 \text{ and } \hat{H}(q)|\psi\rangle = E_n(q)|\psi\rangle\}$$
Quintessences - geometrical prerequisites

- in the adiabatic regime system stays in the n-th eigenstate

- **n-th spectral bundle** (subset of the trivial vector bundle \(\mathcal{Q} \times \mathcal{H} \))

\[
\mathcal{L}_n := \{(q, |\psi\rangle) \in \mathcal{Q} \times \mathcal{H}, \langle \psi | \psi \rangle = 1 \text{ and } \hat{H}(q) |\psi\rangle = E_n(q) |\psi\rangle \}
\]

- \(\mathcal{L}_n \subset \mathcal{Q} \times \mathcal{H} \) inherits **connection** \(\nabla \), similarly as \(\Sigma_{\text{surface}} \subset \mathbb{R}^3 \)
Quintessences - geometrical prerequisites

- in the adiabatic regime system stays in the n-th eigenstate

- n-th spectral bundle (subset of the trivial vector bundle $\mathcal{Q} \times \mathcal{H}$)
 \[\mathcal{L}_n := \{(q, |\Psi\rangle) \in Q \times \mathcal{H}, \langle \Psi | \Psi \rangle = 1 \text{ and } \hat{H}(q)|\Psi\rangle = E_n(q)|\Psi\rangle \} \]

- $\mathcal{L}_n \subset \mathcal{Q} \times \mathcal{H}$ inherits connection ∇, similarly as $\Sigma_{\text{surface}} \subset \mathbb{R}^3$

- RLC connection uses ambient space parallelism and metric:
Quintessences - geometrical prerequisites

- in the adiabatic regime system stays in the n-th eigenstate
- n-th spectral bundle (subset of the trivial vector bundle $\mathcal{Q} \times \mathcal{H}$)
 \[\mathcal{L}_n := \{(q, |\psi\rangle) \in \mathcal{Q} \times \mathcal{H}, \langle \psi | \psi \rangle = 1 \text{ and } \hat{H}(q)|\psi\rangle = E_n(q)|\psi\rangle \} \]
- $\mathcal{L}_n \subset \mathcal{Q} \times \mathcal{H}$ inherits connection ∇, similarly as $\Sigma_{\text{surface}} \subset \mathbb{R}^3$
- RLC connection uses ambient space parallelism and metric:

\[\{\mathbb{R}^3, (\cdot | \cdot)\} \]

Denis Kochan
Comenius University
Geometry of the Berry Phase
Quintessences - geometrical prerequisites
Quintessences - geometrical prerequisites

- **Berry-Simon connection** (Berry-Barry) follows the same idea:
Quintessences - geometrical prerequisites

- **Berry-Simon connection** (Berry-Barry) follows the same idea:

\[
\mathcal{L}_n \leftrightarrow \Sigma_{\text{surface}} \quad \text{and} \quad Q \times \mathcal{H} \leftrightarrow \{ \mathbb{R}^3, (\cdot | \cdot) \}
\]
Quintessences - geometrical prerequisites

- **Berry-Simon connection** (Berry-Barry) follows the same idea:
 \[\mathcal{L}_n \leftrightarrow \Sigma_{\text{surface}} \quad \text{and} \quad Q \times \mathcal{H} \leftrightarrow \{ \mathbb{R}^3, (\cdot | \cdot) \} \]

- picture of the Berry-Barry parallel transport:
Quintessences - geometrical prerequisites

- **Berry-Simon connection** (Berry-Barry) follows the same idea:
 \[\mathcal{L}_n \leftrightarrow \Sigma_{\text{surface}} \quad \text{and} \quad \mathcal{Q} \times \mathcal{H} \leftrightarrow \{ \mathbb{R}^3, (\cdot|\cdot) \} \]

- Picture of the Berry-Barry parallel transport:
Adiabaticity & (An)holonomy

Gauge potential A_μ

Denis Kochan
Comenius University
Geometry of the Berry Phase
Gauge potential A_μ

- choose a local gauge (section) $\Phi_n : q \in \mathcal{Q} \mapsto (q, |n(q)\rangle) \in \mathcal{L}_n$
Gauge potential A_μ

- choose a local gauge (section) $\Phi_n : q \in Q \mapsto (q, |n(q)\rangle) \in \mathcal{L}_n$

- what is a parallel “state-mate” of $|n(q)\rangle$ after an infinitesimal parameter translation $q \mapsto q' = q + \delta v$?
Gauge potential A_μ

- choose a \textit{local gauge (section)} $\Phi_n : q \in Q \mapsto (q, |n(q)\rangle) \in \mathcal{L}_n$

- what is a parallel “state-mate” of $|n(q)\rangle$ after an \textit{infinitesimal parameter translation} $q \mapsto q' = q + \delta v$?

- the answer:
Gauge potential A_μ

- choose a **local gauge (section)** $\Phi_n : q \in Q \mapsto (q, |n(q)\rangle) \in \mathcal{L}_n$

- what is a parallel “state-mate” of $|n(q)\rangle$ after an **infinitesimal** parameter translation $q \mapsto q' = q + \delta v$?

- the answer: $|n(q')\rangle_{BB} = \langle n(q')|n(q)\rangle \otimes |n(q')\rangle = e^{i\delta \varphi}|n(q')\rangle$
Gauge potential A_μ

- choose a **local gauge (section)** $\Phi_n : q \in Q \mapsto (q, |n(q)\rangle) \in L_n$

- what is a parallel "state-mate" of $|n(q)\rangle$ after an **infinitesimal parameter translation** $q \mapsto q' = q + \delta v$?

- the answer: $|n(q')\rangle_{BB} = \langle n(q')|n(q)\rangle \otimes |n(q')\rangle = e^{i\delta \varphi} |n(q')\rangle$

- the **gauge potential** arises on parameter space:

$$
\delta \varphi = A_\mu(q) \cdot \delta v^\mu = i \left\langle n(q) \left| \frac{\partial}{\partial q^\mu} n(q) \right\rangle \right. \cdot \delta v^\mu
$$
Gauge potential A_μ

- choose a local gauge (section) $\Phi_n : q \in \mathcal{Q} \mapsto (q, |n(q)\rangle) \in \mathcal{L}_n$

- what is a parallel “state-mate” of $|n(q)\rangle$ after an infinitesimal parameter translation $q \mapsto q' = q + \delta v$?

- the answer: $|n(q')\rangle_{BB} = \langle n(q')|n(q)\rangle \otimes |n(q')\rangle = e^{i\delta \varphi}|n(q')\rangle$

- the gauge potential arises on parameter space:

$$\delta \varphi = A_\mu(q) \cdot \delta v^\mu = i \left\langle n(q)|\frac{\partial}{\partial q^\mu} n(q)\right\rangle \cdot \delta v^\mu$$

- Remark III.: $\langle n(q)|\partial_{q^\mu} n(q)\rangle$ is pure imaginary quantity, thus

$$A = A_\mu(q) dq^\mu = -\text{Im} \langle n(q)|\partial_{q^\mu} n(q)\rangle \ dx^\mu$$
More realistic perspective

\[U(1) \simeq S^1 \]

|n(q)\rangle \quad \delta v \quad |n(q')\rangle \parallel_{BB} \quad \delta \varphi \quad |n(q')\rangle \quad \Phi_n \quad \delta v \quad q \quad q' = q + \delta v \quad Q \quad \mathcal{L}_{n}\]
Berry phase as (an)holonomy of A_μ
Berry phase as (an)holonomy of A_μ

- gauge transformation: $(q, |n(q)\rangle) \mapsto (q, e^{i\alpha_n(q)}|n(q)\rangle)$
Berry phase as (an)holonomy of A_μ

- **gauge transformation:** $(q, |n(q)\rangle) \mapsto (q, e^{i\alpha_n(q)}|n(q)\rangle)$

$$A_\mu \mapsto A_\mu - \partial_\mu \alpha_n \quad F_{\mu\nu} := \partial_\mu A_\nu - \partial_\nu A_\mu \mapsto F_{\mu\nu}$$
Berry phase as (an)holonomy of A_μ

- **gauge transformation:** $(q, |n(q)\rangle) \mapsto (q, e^{i\alpha_n(q)}|n(q)\rangle)$

$$A_\mu \mapsto A_\mu - \partial_\mu \alpha_n \quad F_{\mu\nu} := \partial_\mu A_\nu - \partial_\nu A_\mu \mapsto F_{\mu\nu}$$

- if the curvature (electromagnetic stress tensor) $F_{\mu\nu} \neq 0$, then BB transport is path dependent.
Berry phase as (an)holonomy of A_μ

- **gauge transformation:** $(q, |n(q)\rangle) \mapsto (q, e^{i\alpha_n(q)}|n(q)\rangle)$

 \[A_\mu \mapsto A_\mu - \partial_\mu \alpha_n \]

 \[F_{\mu\nu} := \partial_\mu A_\nu - \partial_\nu A_\mu \mapsto F_{\mu\nu} \]

- If the curvature (electromagnetic stress tensor) $F_{\mu\nu} \neq 0$, then BB transport is path dependent.

- Phase acquired over a circuit C is the (an)holonomy of A_μ, i.e.
Berry phase as (an)holonomy of A_μ

- **gauge transformation:** $\langle q, |n(q)\rangle \mapsto \langle q, e^{i\alpha_n(q)}|n(q)\rangle$

 $$A_\mu \mapsto A_\mu - \partial_\mu \alpha_n \quad F_{\mu\nu} := \partial_\mu A_\nu - \partial_\nu A_\mu \mapsto F_{\mu\nu}$$

- if the curvature (electromagnetic stress tensor) $F_{\mu\nu} \neq 0$, then BB transport is path dependent

- phase acquired over a circuit C is the (an)holonomy of A_μ, i.e.

 $$\gamma_n^G = \oint_C A_\mu dq^\mu = \int_\Sigma \frac{1}{2} F_{\mu\nu} dq^\mu \wedge dq^\nu , \quad \text{where} \quad \partial \Sigma = C$$
Berry phase as (an)holonomy of A_μ

- **gauge transformation**: \((q, |n(q)\rangle) \mapsto \left(q, e^{i\alpha_n(q)}|n(q)\rangle \right) \)

 \[A_\mu \mapsto A_\mu - \partial_\mu \alpha_n \quad F_{\mu\nu} := \partial_\mu A_\nu - \partial_\nu A_\mu \mapsto F_{\mu\nu} \]

- if the curvature (electromagnetic stress tensor) \(F_{\mu\nu} \neq 0 \), then BB transport is path dependent

- phase acquired over a circuit C is the (an)holonomy of A_μ, ie.

 \[\gamma^G_n = \oint_C A_\mu dq^\mu = \int_{\Sigma} \frac{1}{2} F_{\mu\nu} dq^\mu \wedge dq^\nu \quad , \quad \text{where} \quad \partial \Sigma = C \]

 magnetic flux through Σ
Conclusion
Conclusion

- unfortunately there is not time to discuss some example
unfortunately there is not time to discuss some example

in the case, when spectra of $\{\hat{H}(q)\}$ are degenerate, there is an analog of the geometric phase called Wilczek-Zee phase
unfortunately there is not time to discuss some example

in the case, when spectra of \(\{ \hat{H}(q) \} \) are degenerate, there is an analog of the geometric phase called Wilczek-Zee phase

in classical mechanics, there is as well in adiabatic regime an analog of the Berry phase called Hannay phase (or angel)
a čo povedať fakt úplne na záver?
a čo povedať fakt úplne na záver?

- možno za všetkých povestná teta Kateřina z Jirotkovho Saturnina:
možno za všetkých povestná teta Kateřina z Jirotkovho Saturnina:

A strýček opravdu na leccos přišel. Tak například zjistil při pokusu, který měl velmi vzrušující průběh, že lít vodu do kyseliny je blbost, a vůbec mu nevadilo, že tento poznatek, korektněji vyjádřený, mohl získat z učebnice chemie pro nižší třídy škol středních, aniž by si byl při tom popálil prsty a zánovní vestu.
a čo povedať fakt úplne na záver?

- možno za všetkých povestná teta Kateřina z Jirotkovho Saturnina:

> A strýček opravdu na leccos přišel. Tak například zjistil při pokusu, který měl velmi vzrušující průběh, že lít vodu do kyseliny je blbost, a vůbec mu nevadilo, že tento poznatek, korektněji vyjádřený, mohl získat z učebnice chemie pro nižší třídy škol středních, aniž by si byl při tom popálil prsty a zánovní vestu.

thanks for your attention!