microseminar

informal seminar of Doppler Institute
on quantum theory and related topics and methods,

usually on Thursdays at 10.30 a.m. in Rez, on the territory of the
Department of Theoretical Physics of the Nuclear Physics Institute.

       Enthusiastic visitors and/or speakers are always welcome.





     FORTHCOMING SESSION:







Place: OTF seminar room (second floor)
Date:


     Thursday, August 9th, 2018

Time:                10:30 a.m. (20 minutes + questions)
Speaker:


     Ryan Plestid (McMaster University, Hamilton, Canada)

Title:


     Point Particle Effective Field Theory as a Tool for Singular Potentials


Abstract:               
Interactions between a small compact object (hereafter called the ``source'') and a ``bulk'' field of interest occur generically in physics with examples including finite charge as in electrostatics, and the hydrogen atom. Often, one is interested only in long-distance observables whose only underlying degrees of freedom are contained within the bulk fields. Consequently, it is desirable to be able to describe the system's behaviour on long length scales in terms of *only *the bulk fields of interest. Point Particle Effective Field Theory (PPEFT) achieves this goal by parameterizing the influence of the source on the bulk fields of interest in terms of an action localized at the location of the source, but which is composed only of bulk fields. The multipole expansion of electrostatics is shown to be a special case, however the method is general and can be applied in other, less familiar settings such as a Schrodinger field. We identify a natural power counting scheme that predicts which interactions will dominate the long-distance behavior for *any *source. As is typical in EFTs, short-distance singularities emerge, and must be regulated and subsequently renormalized. Focusing on the example of an atom interacting with a small-compact object via an inverse square potential, I will describe our real-space regulator method, and its assosciated renormaliztion group flows.






     ARCHIVE:





Date and time: Friday, July 20th, 2018, 12:30 p.m. (triple length talk) ,
Speaker: Konstantin G. Zloshchastiev (Durban University of Technology)
Title and abstract: Logarithmic superfluid and its application in a theory of physical vacuum
The physical vacuum is viewed as the background quantum liquid in which dissipation processes are suppressed. This leads to the spatial isotropy and inviscid flow, which make the Michelson-Morley-type measurements insensitive to such system. While being fundamentally non-relativistic, logarithmic superfluid allows in the low-momentum (so-called ``phononic’’) limit small excitations obeying the Lorentz symmetry [arXiv:1108.0847]. Therefore, for an observer operating with such small excitations, their fluid-theoretical description is equivalent to a geometrical description in terms of the spacetime with non-vanishing Riemann curvature, whereas these excitations are observed as relativistic particles [arXiv:0912.4139]; in other words, the relativity postulates are recovered in this special ``phononic’’ limit. However, the ``full’’ observer sees the superfluid flow embedded in 3D Euclidean space, and the relativistic notions, such as a particle or spacetime, are no longer fundamental but can be useful as an approximation, up to a certain threshold value of momentum or energy. It is demonstrated that the logarithmic nonlinearity can cause also the spontaneous symmetry breaking and mass generation phenomena [arXiv:1204.6380]. The related issues, such as the vacuum Cherenkov radiation [arXiv:1003.0657], extended particles and Q-balls [arXiv:1611.02105], induced scalar-tensor gravity, black holes and cosmology, are discussed as well. The studies suggest that the theory of gravity, both classical and quantum, can be viewed as a subset of the theory of physical vacuum, where the latter is viewed as a condensed-matter phenomenon.





Date and time: Wednesday, November 1st, 2017 ,
Speaker: Peter Schlosser (TU Graz)
Title and abstract: Lieb-Thirring type inequality for delta-potentials supported on the hyperplane
The selfadjoint realisation of the differential expression $-\triangle + \alpha \delta_\Sigma$ is defined by a sesquilinear form and the First Representation Theorem. It describes a delta-shaped potential supported on the (d . 1)-dimensional hyperplane $\Sigma$, where the interaction strength $\alpha$ is allowed to be any (not necessarily bounded) function in some $L^p(\Sigma)$ space. With the technique of quasi boundary triplets it is possible to find an equivalent representation of this operator via boundary values as well as a Krein resolvent formula, which allows to calculate the essential spectrum explicitly. For the discrete spectrum a Lieb-Thirring type inequality is proven, which shows, that the sum over all discrete eigenvalues, to some arbitrary (positive) power, is bounded by the $L^p(\Sigma)$-norm of the negative part of the potential. One can even generalise the above setting and shift the potential $\alpha$ by some negative constant. Again it is possible to calculate the essential spectrum explicitly and to derive a Lieb-Thirring type inequality. But in this case the order of convergence of the discrete eigenvalues towards the bottom of the essential spectrum is different.





Date and time: Wednesday, October 4th, 2017, 10:30 a.m.
Speaker: Axel Perez-Obiol (Department of Theoretical Physics, NPI CAS, Rez)
Title and abstract: Twisting and shrinking of carbon nanotubes at zero temperature
Deformations of single-wall carbon nanotubes are investigated within the tight-binding model with deformation-dependent hopping energies. We show that the nanotubes tend to twist and shrink spontaneously at zero temperature. The explicit values of the deformation parameters are computed for a wide range of nanotubes with varying diameter and chirality. The changes of the spectral gap associated with the spontaneous deformation are shown to depend on the chirality of the nanotubes.





Date and time: Wednesday, March 15th, 2017, 10:30 a.m.
Speaker: Petr Jizba (Department of Physics, FNSPE, Czech Technical University in Prague)
Title and abstract: A new class of entropy-power-based uncertainty relations
The concept of entropy power will be used to derive a new one-parameter class of information-theoretic uncertainty relations for pairs of observables in an infinite-dimensional Hilbert space. This class constitute an infinite tower of higher-order cumulant uncertainty relations, which allows in principle to reconstruct the underlying distribution in a process that is analogous to quantum state tomography. I will illustrate the power of the new class by studying Schroedinger cat states and the Cauchy-type heavy-tailed wave function. Finally, I try to cast some fresh light on the black hole information paradox.

Related works:
[1] P. Jizba, J.A. Dunningham and J. Joo, Role of information theoretic uncertainty relations in quantum theory, Annals of Physics 355 (2015) 87
[2] P. Jizba, J.A. Dunningham, A. Hayes and Y. Ma, A new class of entropy-power-based uncertainty relations, Phys. Rev. E 93 (2017) 060104(R)
[3] P. Jizba, H.Kleinert and F.Scardigli, Uncertainty Relation on World Crystal and its Applications to Micro Black Holes, Phys. Rev. D81 (2010) 084030




Date and time: Wednesday, March 8th, 2017, 10:30 a.m.
Speaker: Ananya Ghatak (Indian Institute of Science, Bangalore, India)
Title and abstract: Exotic features of pseudo-Hermitian systems
Recently the study of certain classes of non-Hermitian quantum systems attracted lots of interest as one can have fully consistent quantum theories by restoring the Hermiticity and by upholding the unitary time evolution for such systems in a modified Hilbert space. In this talk we will discuss some of the exciting recent developments with pseudo Hermitian and particularly PT-symmetric Hamiltonians. Systems with such Hamiltonians are adoptable in quantum optics, condensed matter physics and many other branches of physics and science.

Note: After the talk we continued with poster minisession over freshly submitted report
"PT-symmetric non-Hermitian superconductor"
by
A.G. and Tanmoy Das (IISc Bangalore)





Date and time: Tuesday, October 25th, 2016, 12:30 p.m.
Speaker: Hafida Moulla (University of Constantine 1, Constantine, Algeria)
Title and abstract: The q-deformed harmonic oscillator
It is known that the q-deformed version of the operator of "particle position" - which is an observable quantity - is not selfadjoint in L2(R). The resolution of the paradox is provided using the standard three-Hilbert-space theory due to Freeman Dyson. Firstly, the inner product in the Hilbert space of states is properly redefined. Secondly, a few consequences are discussed via the q-deformed version of the usual harmonic oscillator.

Note: The language of the talk was French, the transparencies were in English.





Date and time: Tuesday, October 11th, 2016, 12:30 p.m.
Speaker: Ilhem Leghrib (University of Constantine 1, Constantine, Algeria)
Title and abstract: Swanson model
A q-deformed generalization of the well known non-Hermitian Swanson's Hamiltonian is introduced and studied. In the dynamical regime of small deformations (i.e., with q close to one) the methods of perturbation theory are employed.

Note: The language of the talk was French, the transparencies were in English.





Date and time: Thursday, August 18th, 2016, 2:30 p.m.
Speaker: Ondrej Turek (OTF UJF in Rez and BLTP JINR in Dubna, Russia)
Title and abstract: A generalization of the circulant Hadamard conjecture
The circulant Hadamard conjecture says that circulant Hadamard matrices exist only of order n=1 and n=4. The conjecture, which dates back to a book of Ryser (1963), is partially proved in the symmetric case (Johnsen 1964). The general case, however, remains open to this day. In 1976, Stanton and Mullin showed that circulant conference matrices exist only of order n=2. With regard to their result, we consider circulant matrices C of order n>1 with diagonal entries $d \geq 0$, off-diagonal entries $\pm 1$ and mutually orthogonal columns. Matrices C generalize circulant Hadamard (d=1) and conference (d=0) matrices. We demonstrate that the parameter d and the order of C obey the relation n=2(d+1), whenever d is different from an odd integer, as well as when C is symmetric. The formula n=2(d+1) generalizes the theorems of Stanton, Mullin and Johnsen and reveals a suprising connection between circulant Hadamard and conference matrices. Furthermore, we conjecture that the relation n=2(d+1) is valid also when d is an odd integer, which generalizes the circulant Hadamard conjecture.

The talk was based on a joint work with D. Goyeneche.





Date and time: Tuesday, June 21st, 2016, 10:30 a.m.
Speaker: Artur Ishkhanyan (Institute for Physical Research of the National Academy of Sciences of Armenia, Ashtarak)
Title and abstract: Heun functions and Schroedinger equation
We shall review the cases for which the Schroedinger equation is solved in terms of general and confluent Heun functions. We present the possible choices for the coordinate transformation that provide energy-independent potentials that are proportional to an energy independent continuous parameter and have a shape independence of that parameter. We present several examples of explicit solutions for the latter potentials.





Date and time: Wednesday, June 1st, 2016, 14:30 a.m. (triple length)
Speaker: Alexander Turbiner (Stony Brook and UNAM, Mexico)
Title and abstract: 3-body quantum Coulomb problem: where we are
Current status of 3-body Coulomb problem of charge Z and two electrons (Z; e; e): hydrogen ion H-, helium atom, lithium ion, $H^+_2$ ion etc, is given. Major emphasis is given to a question of stability vs. Coulomb charge Z and to analytic structure of the ground state energy vs. Z. Celebrated 1/Z expansion is reviewed. Two critical charges, physical (corresponding to phase-transition type discontinuity) and unphysical (with associated square-root branch point) are described and calculated. The 2nd excited, weakly-bound state of $H^-$ is predicted.





Date and time: Thursday, January 21st, 2016, 10:30 a. m.
Speaker: Vladimir Lotoreichik (OTF)
Title and abstract: A spectral isoperimetric inequality for cones
Spectral isoperimetric inequalities are one of the most famous issues in spectral geometry, the first rigorous results dating almost a century back to the papers of {Faber} and {Krahn}. Recently such inequalities appeared in the context of Schr\"odinger operators with singular potentials used as models of `leaky quantum wires' and similar systems. In particular, for the 2-D Schroedinger operator with a $\delta$-potential of a fixed strength supported on a loop of a given length it was shown by {Exner}, {Harrell} and {Loss} that its principal eigenvalue is maximal when the loop is a circle. The corresponding problem in 3-D is more involved. For closed simply connected surfaces of a fixed area the sphere gives a local maximum of the ground-state eigenvalue, however, the result does not have a global validity.

Nevertheless, there are 3-D Schroedinger operators with singular interactions supported on surfaces for which one is able to derive a spectral isoperimetric inequality that holds not only locally. The aim of my talk is to discuss one such class considered in our preprint (arXiv:1512.01970). The surfaces in question are of a conical shape, both finite and infinite.

The proofs rely on the Birman-Schwinger principle and on the fact that circles are unique minimisers for a class of energy functionals. The main novel idea consists in the special choice of the test function for the Birman-Schwiner principle.

Joint work with Pavel Exner.





Date and time: Thursday, January 7th, 2016, 13:30 a.m. (irregular time)
Speaker: Ondrej Turek (OTF UJF in Rez and BLTP JINR in Dubna, Russia)
Title and abstract: The effect of edge lengths ratio on the spectrum of a hexagonal lattice
We analyze the spectrum of a Laplacian operator on a dilated honeycomb lattice. The lattice is assumed to be dilated along its axis of symmetry and supporting $\delta$ potentials of strength $\alpha \neq 0$ in its vertices. It turns out that the qualitative properties of the spectrum depend on number-theoretic properties of edge lengths ratio $\theta$. We will show that the number of spectral gaps is infinite for any rational or well approximable $\theta$, whereas there are only finitely many gaps in the spectrum if $\theta$ is badly approximable and the potential strength $\alpha$ in the vertices is small compared to the Markov constant of $\theta$.

This talk is based on joint works with P. Exner.





The archive of the older microseminars:



The list of talks during 2012 - 2015


The list of talks during 2008 - 2011


The list of the talks during 2008


A compactified list of the speakers during 2008


The list of the talks during 2007


A compactified list of the speakers during 2007


The list of the talks during 2006


A compactified list of the speakers during 2006



PS: in parallel, nested seminars of the similar type may be also sought on the webpages of our local

microconferences

devoted to the analytic an algebraic methods in physics




Info for potential/interested external speakers:

you would be always welcome by: all of us
you may choose any date and time though Thursdays on 10.30 are preferred
and any subject related to
  • analytic and algebraic methods
  • constructive Quantum Mechanics
  • exactly solvable problems
  • perturbation expansions
  • non-Hermitian quantum models
  • computer tricks
  • relativistic equations
  • and so on.

you should book your term of talk: not later than 2 or 3 days in advance
your talk's length should be 20 minutes
time for subsequent questions: unlimited


return upwards